Enteral administration of lipid-enriched nutrition effectively attenuates inflammation via a cholecystokinin (CCK)-mediated vagovagal anti-inflammatory reflex. Cholecystokinin release and subsequent activation of the vagus are dependent on chylomicron formation and associated with release of additional gut peptides. The current study investigates the intestinal processes underlying activation of the CCK-mediated vagal anti-inflammatory pathway by lipid-enriched nutrition. Rats and mice were subjected to hemorrhagic shock (HS) or endotoxemia, respectively. Prior to the experimental procedures, animals were fasted or fed lipid-enriched nutrition. Pluronic L-81 (L-81) was added to the feeding to investigate involvement of chylomicron formation in activation of mesenteric afferent fibers and the immune-modulating potential of lipid-enriched nutrition. Ob/Ob mice and selective receptor antagonists were used to study the role of leptin, glucagon-like peptide 1 and peptide YY in activation of the nutritional reflex. Electrophysiological analysis of mesenteric afferents in mice revealed that lipid-enriched nutrition-mediated neural activation was abrogated by L-81 (P<.05). L-81 blunted the beneficial effects of lipid-enriched nutrition on systemic inflammation and intestinal integrity in both species (all parameters, P<.01). Ob/Ob mice required a higher dose of nutrition compared with wild-type mice to attenuate plasma levels of TNF-α and ileum-lipid binding protein, a marker for enterocyte damage (both P<.01), suggesting a higher stimulation threshold in leptin-deficient mice. Administration of a glucagon-like peptide 1-receptor antagonist, but not leptin or peptide YY antagonists, suppressed the effects of lipid-enriched nutrition. These data indicate that chylomicron formation is essential and activation of the glucagon-like peptide 1-receptor is involved in activation of the nutritional anti-inflammatory pathway by lipid-enriched nutrition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2010.09.006 | DOI Listing |
Liver Int
August 2024
Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium.
Myosteatosis is highly prevalent in metabolic dysfunction-associated steatotic liver disease (MASLD) and could reciprocally impact liver function. Decreasing muscle fat could be indirectly hepatoprotective in MASLD. We conducted a review to identify interventions reducing myosteatosis and their impact on liver function.
View Article and Find Full Text PDFFood Funct
November 2023
Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
Intestinal development plays a critical role in physiology and disease in early life and has long-term effects on the health status throughout the lifespan. Maternal high-fat diet (HFD) fuels the inflammatory reaction and metabolic syndrome, disrupts intestinal barrier function, and alters gut microbiota in offspring. The aim of this study was to evaluate whether polar lipid-enriched milk fat globule membrane (MFGM-PL) supplementation in maternal HFD could promote intestinal barrier function and modulate gut microbiota in male offspring.
View Article and Find Full Text PDFMedicina (Kaunas)
July 2022
UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
Today, few clinicians are still convinced that lipids are sepsis risk factors in patients receiving parenteral nutrition. This dogma is principally based on old literature. This review deals with the most recent literature search that provided up-to-date data over the past ten years.
View Article and Find Full Text PDFFood Chem
September 2022
Department of Pharmacy, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, I-84084 Fisciano, SA, Italy. Electronic address:
Considering the ongoing interest in foods rich in nutrients like polyunsaturated fatty acids and bioactive polar lipids, the chemical and biological investigation of Portulaca oleracea (purslane), a herbaceous plant typically appreciated in Mediterranean and Asiatic diet, was carried out. The LC-ESI/HRMS/MS analysis of extracts and lipid enriched fractions of purslane edible parts provided a comprehensive polar lipid profile, ranging from linear and cyclic oxylipins to high molecular weight lipids including glycolipids, phospholipids and sphingolipids. The evaluation of the anti-inflammatory potential by in vitro reporter gene assays highlighted the ability of purslane lipid enriched fractions, at a concentration of 20 µg/ml, to inhibit the TNF-α-stimulated NF-kB pathway by 30-40% and to activate PPAR-ɣ and Nrf2 transcription factors to the same extent or more than the positive control, respectively.
View Article and Find Full Text PDFCancers (Basel)
April 2021
Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico.
Non-alcoholic fatty liver disease (NAFLD) and progression to non-alcoholic steatohepatitis (NASH) result as a consequence of diverse conditions, mainly unbalanced diets. Particularly, high-fat and cholesterol content, as well as carbohydrates, such as those commonly ingested in Western countries, frequently drive adverse metabolic alterations in the liver and promote NAFLD development. Lipid liver overload is also one of the main risk factors for initiation and progression of hepatocellular carcinoma (HCC), but detailed knowledge on the relevance of high nutritional cholesterol remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!