A two-class population balance equation yielding bimodal flocculation of marine or estuarine sediments.

Water Res

Hydraulics Laboratory, Department of Civil Engineering, Katholieke University of Leuven, Kasteelpark Arenberg 40, B-3001 Heverlee, Belgium.

Published: February 2011

Bimodal flocculation of marine and estuarine sediments describes the aggregation and breakage process in which dense microflocs and floppy macroflocs change their relative mass fraction and develop a bimodal floc size distribution. To simulate bimodal flocculation of such sediments, a Two-Class Population Balance Equation (TCPBE), which includes both size-fixed microflocs and size-varying macroflocs, was developed. The new TCPBE was tested by a model-data fitting analysis with experimental data from 1-D column tests, in comparison with the simple Single-Class PBE (SCPBE) and the elaborate Multi-Class PBE (MCPBE). Results showed that the TCPBE was the simplest model that is capable of simulating the major aspects of the bimodal flocculation of marine and estuarine sediments. Therefore, the TCPBE can be implemented in a large-scale multi-dimensional flocculation model with least computational cost and used as a prototypic model for researchers to investigate complicated cohesive sediment transport in marine and estuarine environments. Incorporating additional biological and physicochemical aspects into the TCPBE flocculation process is straight-forward also.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2010.12.028DOI Listing

Publication Analysis

Top Keywords

bimodal flocculation
16
marine estuarine
16
flocculation marine
12
estuarine sediments
12
two-class population
8
population balance
8
balance equation
8
flocculation
6
bimodal
5
tcpbe
5

Similar Publications

Mud flocculation and settling play key role in understanding sediment transport cycle and affect water quality in estuaries and coastal seas. However, the morphological irregularity and structural instability of fragile mud flocs set huge obstacles for quantifying geometric property accurately and establishing reliable predicting tools in settling dynamics via previous observing strategies based on instant measured and 2-dimensional imagery floc parameterizations. Here we designed a multi-camera apparatus targeting capturing multiple angles of individual flocs, and developed a multi-view segmentation algorithm on floc images analysis.

View Article and Find Full Text PDF

Biophysical cohesive mud, consisting of clay minerals and extracellular polymeric substance (EPS), plays significant role in determining sediments, nutrients and pollutants transport in estuarine and coastal systems. Series of laboratory jar experiments have been conducted aiming at filling the gap of knowledge regarding how biological cohesive EPS affects equilibrium flocculation of EPS-mineral mixtures. Four types of common clay (chlorite, kaolinite, illite and montmorillonite) were chosen due to their abundance in estuarine mud and distinct crystal chemistry and structures.

View Article and Find Full Text PDF

Emulsion gels are gaining interest as fat replacers due to their benefits associated with calorie reduction and their versatility in a wide range of products. Their production process needs to be tailored to obtain the desired stability and physicochemical properties. This study investigated the effect of heat (70, 80, and 90 °C) and pressure (5, 10, and 15 MPa) to produce whey protein emulsion gels using a pilot-scale tubular heat exchanger equipped with a homogenization valve.

View Article and Find Full Text PDF

Biofilm-coated microplastics are omnipresent in aquatic environments, carrying different organic matter (OM) that in turn influences the flocculation and settling of microplastic aggregates. In this study, the effects of chitosan, guar gum, humic acid, and xanthan gum on the flocculation of anthropogenic microplastics are examined under controlled shear through the mixing chamber experiments. The results show that all of the selected OMs have positive effects on biofilm culturing and thus enhance the growth of microplastic flocs, with more evident promoting effects for cationic and neutral OMs (i.

View Article and Find Full Text PDF

Flocculation of Clay-Based Tailings: Differences of Kaolin and Sodium Montmorillonite in Salt Medium.

Materials (Basel)

February 2022

Departamento de Ingeniería Química y Procesos de Minerales, Facultad de Ingeniería, Universidad de Antofagasta, P.O. Box 170, Antofagasta 1240000, Chile.

Complex gangues and low-quality waters are a concern for the mining industries, particularly in water shortage areas, where the closure of hydric circuits and reduction in water use are essential to maintain the economic and environmental sustainability of mineral processing. This study analyzes the phenomena involved in the water recovery stage, such as sedimentation of clay-based tailings flocculated with anionic polyelectrolyte in industrial water and seawater. Flocculation-sedimentation batch tests were performed to ascertain the aggregate size distribution, the hindered settling rate, and the structure of flocs expressed through their fractal dimension and density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!