Viruses rely on the host translation machinery to complete their life cycles. Picornaviruses use an internal ribosome entry site to initiate cap-independent protein translation and in parallel host cap-dependent translation is shut off. This process is thought to occur primarily via cleavage of host translation initiation factors eIF4GI and eIF4GII by viral proteases. Here we describe another mechanism whereby miR-141 induced upon enterovirus infection targets the cap-dependent translation initiation factor, eIF4E, for shutoff of host protein synthesis. Knockdown of miR-141 reduces viral propagation, and silencing of eIF4E can completely reverse the inhibitory effect of the miR-141 antagomiR on viral propagation. Ectopic expression of miR-141 promotes the switch from cap-dependent to cap-independent translation. Moreover, we identified a transcription factor, EGR1, which is partly responsible for miR-141 induction in response to enterovirus infection. Our results suggest that upregulation of miR-141 upon enterovirus infection can facilitate viral propagation by expediting the translational switch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chom.2010.12.001 | DOI Listing |
Nord J Psychiatry
January 2025
Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.
Purpose: Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental condition that affects approximately 5% of the pediatric population, with increased prevalence among those with type 1 diabetes (T1D). Reports suggest that unrecognized and untreated ADHD impairs T1D control and that ADHD may be underdiagnosed in the Polish population. The International Society for Pediatric and Adolescent Diabetes recommends neurodevelopmental assessments in children with T1D, but specific guidelines on procedures and implementation are lacking.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.
View Article and Find Full Text PDFViruses
December 2024
Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.
The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Corteva Agriscience, 7000 NW 62nd Ave, Johnston, IA 50131, USA.
Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!