A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

α-Synuclein, leucine-rich repeat kinase-2, and manganese in the pathogenesis of Parkinson disease. | LitMetric

Parkinson disease (PD) is the most common movement disorder. It is characterized by bradykinesia, postural instability, resting tremor, and rigidity associated with the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Another pathological hallmark of PD is the presence of α-synuclein proteiniacous inclusions, known as Lewy bodies and Lewy neurites, in some of the remaining dopaminergic neurons. Mounting evidence indicates that both genetic and environmental factors contribute to the etiology of PD. For example, genetic mutations (duplications, triplications or missense mutations) in the α-synuclein gene can lead to PD, but even in these patients, age-dependent physiological changes or environmental exposures appear to be involved in disease presentation. Several additional alterations in many other genes have been established to either cause or increase the risk of parkinson disease. More specifically, autosomal dominant missense mutations in the gene for leucine-rich repeat kinase 2 (LRRK2/PARK8) are the most common known cause of PD. Recently it was shown that G2019S, the most common diseasing-causing mutant of LRRK2, has dramatic effects on the kinase activity of LRRK2: while activity of wild-type LRRK2 is inhibited by manganese, the G2019S mutation abrogates this inhibition. Based on the in vitro kinetic properties of LRRK2 in the presence of manganese, we proposed that LRRK2 may be a sensor of cytoplasmic manganese levels and that the G2019S mutant has lost this function. This finding, alongside a growing number of studies demonstrating an interaction between PD-associated proteins and manganese, suggest that dysregulation of neuronal manganese homeostasis over a lifetime can play an important role in the etiology of PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134594PMC
http://dx.doi.org/10.1016/j.neuro.2011.01.003DOI Listing

Publication Analysis

Top Keywords

parkinson disease
12
leucine-rich repeat
8
dopaminergic neurons
8
missense mutations
8
manganese
6
lrrk2
5
α-synuclein leucine-rich
4
repeat kinase-2
4
kinase-2 manganese
4
manganese pathogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!