We report characterization of pH-dependent behavior in polyelectrolyte multilayers (PEMs) fabricated from poly(allylamine) (PAH) and low molecular weight poly(acrylic acid) (PAA) synthesized by living/controlled polymerization. Exposure of these films to solutions of low pH (e.g. pH 2.0-3.2) resulted in transformations from films that were smooth and uniform to films with porous morphologies, as characterized by scanning electron microscopy (SEM). We observed large differences in both the extent of this transformation and the sizes of the pores that resulted compared to films fabricated using higher molecular weight PAA used in past studies. Whereas transformations reported in past studies generally lead to pores with sizes in the range of 0.3-2 μm, we observed larger-scale transformations and films with cell-like internal structures comprised of networks of closed pores, interconnected pores, and through-pores with sizes as large as 10-15 μm depending on pH and the manner in which the films were incubated. Films fabricated using fluorescently end-labeled samples of PAA permitted real-time imaging of changes in internal structure using confocal microscopy (LSCM). The results of these studies also revealed large differences in the nature of these transformations when films were placed in contact with surfaces as opposed to when dipped into aqueous solutions. Our results reveal approaches that can be used to fabricate films with large pores (e.g., pores with sizes on the order of 10-15 μm) and suggest methods that could potentially be used to generate PEMs having controlled gradients in pore size.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2010.12.019DOI Listing

Publication Analysis

Top Keywords

molecular weight
12
transformations films
12
films
9
polyelectrolyte multilayers
8
low molecular
8
weight polyacrylic
8
polyacrylic acid
8
large differences
8
films fabricated
8
pores sizes
8

Similar Publications

Inducible engineering precursor metabolic flux for synthesizing hyaluronic acid of customized molecular weight in Streptococcus zooepidemicus.

Microb Cell Fact

January 2025

MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.

Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.

View Article and Find Full Text PDF

The effect of different feeding habits on gut morphology and digestive function has been intensively studied during the last decades but sympatric closely related fishes are relatively rare objects of such studies. In the present study, we have identified both morphological and physiological changes in the digestive system of a sympatric pair of whitefish represented by "normal" Coregonus lavaretus pidschian (benthivorous) and "dwarf" C. l.

View Article and Find Full Text PDF

Challenges emerge in the quest for highly efficient and biocompatible coatings to tackle microbial contamination. Here, we propose a bioinspired paradigm combining (-)-epigallocatechin gallate (EGCG) and l-arginine surfactants (LAM) as all-green building blocks for advanced coatings with superior performance. Molecular dynamics simulations reveal the natural assembly process of the EGCG/LAM supramolecular nanoparticles (ELA NPs).

View Article and Find Full Text PDF

Antioxidant and anti-aging activities of Acanthopanax senticosus polysaccharide CQ-1 in nematode Caenorhabditis elegans.

Int J Biol Macromol

January 2025

Shandong Provincial Third Hospital, Shandong University, Jinan 250031, China; Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Acanthopanax senticosus is a typical food medicine homology in China. The antioxidant and anti-aging activities of A. senticosus polysaccharides, especially the purified polysaccharide, have not been thoroughly investigated.

View Article and Find Full Text PDF

Effective pretreatment of tea stem via poly-deep eutectic solvent for promoting platform molecule production and obtaining fluorescent lignin.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:

In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!