During brain development, neuronal stem cells and immature neurons express high and low levels of, respectively, the Cl(-) transporters NKCC1 and KCC2, which results in high intracellular Cl(-) concentrations. Under these circumstances chloride-flux through the GABA-A channel is from intracellular to extracellular and consequently GABA depolarizes rather than hyperpolarizes immature cells. This excitatory response is essential for neurodevelopment since it affects proliferation of the neuronal progenitor pool, neuronal differentiation, dendrite and synapse formation and integration into the existing neuronal network. In animal experiments, seizures were found to increase NKCC1 expression, lower the KCC2 expression and accelerate neuronal differentiation. An increased expression of NKCC1 and mutations of the gene have been associated with schizophrenia. Stimulation of nicotinic α-7 receptors on mouse hippocampal neurons increases the expression of KCC2. A microdeletion in the genomic area 15q13-14 containing the nicotine α7 receptor has been described in patients with mental retardation, schizophrenia and juvenile epilepsy. It is conceivable that haplotype-insufficiency of the nicotinic α7 receptor might lead to a reduction in KCC2 protein levels. The data indicate that all three schizophrenia risk factors, i.e. seizures, mutations in NKCC1 and nicotinic α-7 receptors haplotype-insufficiency contribute to higher intracellular Cl(-) concentrations, increased neuronal excitability and accelerated neuronal differentiation. Since also several other genetic risk factors for schizophrenia seem to accelerate neuronal maturation, it is hypothesized that the structural, cognitive and behavioral deficits of schizophrenia are caused be a too fast brain maturation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2011.01.004 | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Brown University, Providence RI, USA.
Voltage-gated potassium conductances [Formula: see text] play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing [Formula: see text] in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis (MS) and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
Neurodegenerative diseases of both the central and peripheral nervous system are characterized by selective neuronal vulnerability, i.e., pathology that affects particular types of neurons.
View Article and Find Full Text PDFGenes Dev
January 2025
Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
Neuronal maturation is guided by changes in the chromatin landscape that control developmental gene expression programs. Histone bivalency, the co-occurrence of activating and repressive histone modifications, has emerged as an epigenetic feature of developmentally regulated genes during neuronal maturation. Although initially associated with early embryonic development, recent studies have shown that histone bivalency also exists in differentiated and mature neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!