In an effort to increase ethanol productivity during the consolidated bioprocessing (CBP) of lignocellulosics by Fusarium oxysporum, we attempted the constitutive homologous overexpression of one of the key process enzymes, namely an endo-xylanase. The endo-β-1,4-xylanase 2 gene was incorporated into the F. oxysporum genome under the regulation of the gpdA promoter of Aspergillus nidulans. The transformation was effected through Agrobacterium tumefaciens and resulted in 12 transformants, two of which were selected for further study due to their high extracellular xylanase activities under normally repressing conditions (glucose as sole carbon source). During natural induction conditions (growth on xylan) though, the extracellular enzyme levels of the transformants were only marginally higher (5-10%) compared to the wild type despite the significantly stronger xylanase 2 mRNA signals. SDS-PAGE verified enzyme assay results that there was no intracellular xylanase 2 accumulation in the transformants, suggesting the potential regulation in a post transcriptional or translational level. The fermentative performance of the transformants was evaluated and compared to that of the wild type in simple CBP systems using either corn cob or wheat bran as sole carbon sources. Both transformants produced approximately 60% more ethanol compared to the wild type on corn cob, while for wheat bran this picture was repeated for only one of them. This result is attributed to the high extracellular xylanase activities in the transformants' fermentation broths that were maintained 2-2.5-fold higher compared to the wild type.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2011.01.002DOI Listing

Publication Analysis

Top Keywords

compared wild
16
wild type
16
homologous overexpression
8
fusarium oxysporum
8
ethanol productivity
8
productivity consolidated
8
consolidated bioprocessing
8
bioprocessing cbp
8
cbp lignocellulosics
8
high extracellular
8

Similar Publications

EGFR status assessment using reflex testing targeted next-generation sequencing for resected non-squamous non-small cell lung cancer.

Virchows Arch

December 2024

Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, CHU Nice, FHU OncoAge, IHU RespirERA, Nice, France.

EGFR status assessment is mandatory for adjuvant decision-making of resected stage IB-IIIA non-squamous non-small cell lung cancer (NS-NSCLC). It is questionable whether single-gene RT-PCR versus next-generation sequencing (NGS) should be used for this evaluation. Moreover, co-occurring mutations have an impact on tumor behavior and may influence future therapeutic decision-making.

View Article and Find Full Text PDF

Auxin promotes chloroplast division by increasing the expression of chloroplast division genes.

Plant Cell Rep

December 2024

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Auxin stimulates chloroplast division by upregulating the expression of genes involved in chloroplast division and influencing the positioning of chloroplast division rings. Chloroplasts divide by binary fission, forming a ring complex at the division site. Auxin, particularly indole acetic acid (IAA), significantly influences various aspects of plant growth.

View Article and Find Full Text PDF

Chromosome-scale assembly and annotation of the wild wheat relative Aegilops comosa.

Sci Data

December 2024

State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.

Wild relatives of wheat are valuable sources for enhancing the genetic diversity of common wheat. Aegilops comosa, an annual diploid species with an MM genome constitution, possesses numerous agronomically valuable traits that can be exploited for wheat improvement. In this study, we report a chromosome-level genome assembly of Ae.

View Article and Find Full Text PDF

Impact of DNA Ligase 1 Genotypes on Childhood Acute Lymphocytic Leukemia.

In Vivo

December 2024

Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.;

Background/aim: Genetic polymorphisms in DNA repair mechanisms can modulate overall DNA repair capacity, potentially influencing individual susceptibility to cancer. This study investigated the relationship between polymorphic variations in DNA ligase 1 and the risk of childhood acute lymphocytic leukemia (cALL).

Materials And Methods: The genotypes of DNA ligase 1 rs20579 were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis.

View Article and Find Full Text PDF

Background: Urate transporter 1 (URAT1) is a well-known therapeutic target for reducing urate levels in the treatment of hyperuricemia and gout. However, current pharmacological studies have failed to evaluate the efficacy of URAT1 inhibitors in non-primate animal models. We established a human URAT1 (hURAT1) transgenic knock-in (KI) mouse model to assess uricosuric agents' effectiveness and characterize URAT1-caused pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!