AI Article Synopsis

Article Abstract

Helicobacter pylori is the leading cause of gastritis, peptic ulcer disease and gastric adenocarcinoma and lymphoma in humans. Due to the decreasing efficacy of anti-H. pylori antibiotic therapy in clinical practice, there is renewed interest in the development of anti-H. pylori vaccines. In this study an in silico-based approach was utilized to develop a multi-epitope DNA-prime/peptide-boost immunization strategy using informatics tools. The efficacy of this construct was then assessed as a therapeutic vaccine in a mouse model of gastric cancer induced by chronic H. pylori infection. The multi-epitope vaccine administered intranasally induced a broad immune response as determined by interferon-gamma production in ELISpot assays. This was associated with a significant reduction in H. pylori colonization compared with mice immunized with the same vaccine intramuscularly, given an empty plasmid, or given a whole H. pylori lysate intranasally as the immunogen. Total scores of gastric histological changes were not significantly different among the 4 experimental groups. These results suggest that further development of an epitope-based mucosal vaccine may be beneficial in eradicating H. pylori and reducing the burden of the associated gastric diseases in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046230PMC
http://dx.doi.org/10.1016/j.vaccine.2010.12.130DOI Listing

Publication Analysis

Top Keywords

pylori
8
helicobacter pylori
8
mouse model
8
anti-h pylori
8
helicovax epitope-based
4
epitope-based therapeutic
4
therapeutic helicobacter
4
pylori vaccination
4
vaccination mouse
4
model helicobacter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!