Objectives: The oestrogen receptor β (ERβ) selective agonist diarylpropionitrile (DPN) relaxes endothelium-denuded rat aorta, but the signalling mechanism is unknown. The aim of this study was to assess whether protein kinase A (PKA) signalling is involved in DPN action.
Methods: cAMP was measured by radioimmunoassay, HSP20 phosphorylation by 2D gel electrophoresis with immunoblotting, and membrane potential and free cytosolic calcium by flow cytometry.
Key Findings: DPN increased cAMP content and hyperpolarised cell membranes over the same range of concentrations as it relaxed phenylephrine-precontracted aortic rings (10-300 µM). DPN-induced vasorelaxation was largely reduced by the PKA inhibitors Rp-8-Br-cAMPS (8-bromoadenosine-3', 5'-cyclic monophosphorothioate, Rp-isomer) and H-89 (N-(2-bromocynnamyl(amino)ethyl)-5-isoquinoline sulfonamide HCl) (-73%) and by the adenylate cyclase inhibitor MDL12330A (cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine)) (-65.5%). Conversely, the PKG inhibitor Rp-8-Br-cGMP was inactive against DPN vasorelaxation. In aortic smooth muscle segments, DPN increased PKA-dependent HSP20 phosphorylation, an effect reversed by H-89. Relaxant responses to DPN were modestly antagonised (-23 to -48% reduction; n=12 per compound) by the potassium channel inhibitors iberiotoxin, PNU-37883A, 4-aminopyridine, or BaCl(2) . All four potassium channel inhibitors together reduced DPN relaxation by 86±9% (n=12) and fully blocked DPN hyperpolarisation.
Conclusions: ERβ-dependent relaxation of rat aortic smooth muscle evokes an adenylate cyclase/cAMP/PKA signalling pathway, likely activating the cystic fibrosis transmembrane conductance regulator chloride channel and at least four potassium channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.2042-7158.2010.01203.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!