A review. Transition metal catalyzed decarboxylative allylations, benzylations, and interceptive allylations are reviewed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116714 | PMC |
http://dx.doi.org/10.1021/cr1002744 | DOI Listing |
Chem Commun (Camb)
January 2025
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Methodological studies on the transformations of vinylidene cyclopropanes (VDCPs) have been substantially developed in the past few decades, and significant progress has been achieved in visible light-mediated, non-metal-related, and transition metal-catalyzed processes. In particular, when reactive functional groups are introduced into the backbone of VDCPs, a variety of cascade or sequential transformations can take place to produce more complex cyclic or polycyclic compounds. This review describes the recent advancements in this field.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
A concise and convergent synthesis of the isosteroidal alkaloids veratramine and 20--veratramine has been accomplished. A Horner-Wadsworth-Emmons olefination joins two chiral building blocks of approximately equal complexity and a transition-metal catalyzed intramolecular Diels-Alder cycloaddition-aromatization cascade constructs the tetrasubstituted arene. Other key steps include a highly diastereoselective crotylation of an -sulfonyl iminium ion and an Eschenmoser fragmentation.
View Article and Find Full Text PDFRSC Adv
January 2025
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
Due to the presence of the pyridyl directing group, -aryl-2-aminopyridines can quickly form stable complexes with metals, leading to cyclization and functionalization reactions. A large number of N-heterocycles and nitrogen-based molecules can be easily constructed this direct and atom-economical cross-coupling strategy. In this review, we have highlighted the transformations of -aryl-2-aminopyridines in the presence of various transition metal catalysts, such as palladium, rhodium, iridium, ruthenium, cobalt and copper.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Borch Department of Medicinal Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
Fluoroalkyl arenes (Ar-R) are valuable substructures present in several FDA-approved drugs, patents, agrochemicals, and materials, and complementary strategies that enable access to a broad spectrum of Ar-R compounds benefit these applied fields. Herein, we report a deoxyfluoroalkylation-aromatization strategy to convert cyclohexanones into broad-spectrum Ar-R containing compounds. Generally, the fluoroalkyl sources were activated to participate in a 1,2-addition reaction followed by aromatization in a sequence that contrasts more common preparations of these Ar-R compounds, such as (i) transition-metal catalyzed cross-coupling reactions of aryl electrophiles and nucleophiles, and (ii) radical fluoroalkylation reactions of C-H bonds of arenes.
View Article and Find Full Text PDFOrg Lett
January 2025
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
The enantioselective synthesis of P(V)-stereogenic compounds has emerged as an interesting research topic primarily due to their significant biological activity and broad application prospects. Herein, we disclose a method for the construction of P(V)-stereogenic compounds from prochiral phosphinamides and aryl iodides via palladium- and chiral norbornene-catalyzed desymmetric annulation. The P(V)-stereogenic compounds were formed with a broad scope with excellent enantiomeric excesses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!