A clean bifurcation between two important photochemical reactions through competition of a triplet state Type II H-abstraction reaction with a photo-Favorskii rearrangement for (o/p)-hydroxy-o-methylphenacyl esters that depends on the water content of the solvent has been established. The switch from the anhydrous Type II pathway that yields indanones to the aqueous-dependent pathway producing benzofuranones occurs abruptly at low water concentrations (~8%). The surprisingly clean yields suggest that such reactions are synthetically promising.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039054 | PMC |
http://dx.doi.org/10.1021/ol102887f | DOI Listing |
ACS Nano
January 2025
Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
The power conversion efficiencies (PCEs) of polycrystalline perovskite solar cells (PC-PSCs) have now reached a plateau after a decade of rapid development, leaving a distinct gap from their Shockley-Queisser limit. To continuously mitigate the PCE deficit, nonradiative carrier losses resulting from defects should be further optimized. Single-crystal perovskites are considered an ideal platform to study the efficiency limit of perovskite solar cells due to their intrinsically low defect density, as demonstrated in bulk single crystals.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, Changchun 130022, China.
As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Department of Academic, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru, ORCID: https://orcid.org/0000-0002-0594-5834.
Objective: To evaluate the shear strength of adhesives based on the type of solvent (ethanol and acetone), aged and light-cured using light-emitting diode (LED) units with different wavelengths. Polywave and monowave LED units were employed for this study.
Materials And Methods: Ninety bovine tooth samples were analyzed using OptiBond Universal adhesive (acetone) and single bond universal adhesive (ethanol).
Small
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.
Building 2D/3D heterojunction is a promising approach to passivate surface defects and improve the stability of perovskite solar cells (PSCs). Developing effective methods to build high-quality 2D/3D heterojunction is in demand. The formation of 2D/3D heterojunction involves both the diffusion of 2D spacer molecules and phase transition from 3D to 2D structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!