Inoculation with efficient microbes had been proved to be the most important way for the bioremediation of polluted environments. For the treatment of abandoned site of Beijing Coking Chemical Plant contaminated with high level of high-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), a bacterial consortium capable of degrading HMW-PAHs, designated 1-18-1, was enriched and screened from HMW-PAHs contaminated soil. Its degrading ability was analyzed by high performance liquid chromatography (HPLC), and the community structure was investigated by construction and analyses of the 16S rRNA gene clone libraries (A, B and F) at different transfers. The results indicated that 1-18-1 was able to utilize pyrene, fluoranthene and benzo[a]pyrene as sole carbon and energy source for growth. The degradation rate of pyrene and fluoranthene reached 82.8% and 96.2% after incubation for 8 days at 30 degrees C, respectively; while the degradation rate of benzo[a]pyrene was only 65.1% after incubation for 28 days at 30 degrees C. Totally, 108, 100 and 100 valid clones were randomly selected and sequenced from the libraries A, B, and F. Phylogenetic analyses showed that all the clones could be divided into 5 groups, Bacteroidetes, alpha-Proteobacteria, Actinobacteria, beta-Proteobacteria and gamma-Proteobacteria. Sequence similarity analyses showed total 39 operational taxonomic units (OTUs) in the libraries. The predominant bacterial groups were alpha-Proteobacteria (19 OTUs, 48.7%), gamma-Proteobacteria (9 OTUs, 23.1%) and beta-Proteobacteria (8 OTUs, 20.5%). During the transfer process, the proportions of alpha-Proteobacteria and beta-Proteobacteria increased greatly (from 47% to 93%), while gamma-Proteobacteria decreased from 32% (library A) to 6% (library F); and Bacteroidetes group disappeared in libraries B and F.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(09)60292-8DOI Listing

Publication Analysis

Top Keywords

community structure
8
polycyclic aromatic
8
bacterial consortium
8
contaminated soil
8
pyrene fluoranthene
8
degradation rate
8
incubation days
8
days degrees
8
screening degrading
4
degrading characteristics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!