Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dehydration of fructose and glucose in dipolar, aprotic solvents leads to formation of 5-hydroxymethylfurfural. Conditions for continuous flow reactions using a cartridge-based reactor system and a stop-flow microwave reactor were established showing very good product yields and selectivity without the limitation of a batch process such as upscaling and precise temperature monitoring and control. A maximum product HPLC yield of 90.3% under cartridge-based heating and 85.6% under microwave heating could be achieved using mild and quick reaction conditions. Formation of levulinic acid as a by-product could not be detected under the optimized reaction conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-010-9295-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!