Study of the alkyl chain length on laccase stability and enzymatic kinetic with imidazolium ionic liquids.

Appl Biochem Biotechnol

LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, University of Porto, Rua, Portugal.

Published: June 2011

The activity and stability of laccase and their kinetic mechanisms in water soluble ionic liquids (ILs): 1-butyl-3-methyl imidazolium chloride [C(4)mim][Cl], 1-octyl-3-methyl imidazolium chloride [C(8)mim][Cl], and 1-decyl-3-methyl imidazolium chloride [C(10)mim][Cl] were investigated. The results show that an IL concentration up to 10% is satisfactory for initial laccase activity at pH 9.0. The laccase stability was well maintained in [C(4)mim][Cl] IL when compared to the control. The inactivation of laccase increases with the length of the alkyl chain in the IL: [C(10)mim][Cl] > [C(8)mim][Cl] > [C(4)mim][Cl]. The kinetic studies in the presence of ABTS as substrate allowed calculating the Michaelis-Menten parameters. Among the ILs, [C(4)mim][Cl] was the suitable choice attending to laccase activity and stability. Alkyl chains in the ions of ILs have a deactivating effect on laccase, which increases strongly with the length of the alkyl chain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-010-9154-2DOI Listing

Publication Analysis

Top Keywords

alkyl chain
12
imidazolium chloride
12
laccase stability
8
ionic liquids
8
activity stability
8
laccase activity
8
laccase increases
8
increases length
8
length alkyl
8
laccase
7

Similar Publications

This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.

View Article and Find Full Text PDF

Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.

View Article and Find Full Text PDF

N,O-Heterocyclic ligands such as 2,9-diamide-1,10-phenanthroline dicarboxamide (DAPhen) and bis-lactam-1,10-phenanthroline (BLPhen) exhibit excellent separation performance for Am(III) and Eu(III) in high-level liquid waste. However, DAPhen-based ligands show poor extraction capacity, and BLPhen ligands suffer from decomposition in acidic solutions, which hinders their application in practical separation processes. To develop ligands with superior performance, two new completely preorganized and highly stabilized bis-lactam-1,10-phenanthroline (BLPhen) ligands with varying alkyl chain lengths were synthesized, demonstrating exceptional extraction and separation of Am(III) from Eu(III) with maximum separation factors of 68 and 53, respectively.

View Article and Find Full Text PDF

The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times.

View Article and Find Full Text PDF

Construction of Supramolecular Polymer Network Elastomers Based on Pillar[5]arene/Alkyl Chain Host-Guest Interactions.

ACS Macro Lett

January 2025

Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

As a special kind of supramolecular compound with many favorable properties, pillar[]arene-based supramolecular polymer networks (SPNs) show potential application in many fields. Although we have come a long way using pillar[]arene to prepare SPNs and construct a series of smart materials, it remains a challenge to enhance the mechanical strength of pillar[]arene-based SPNs. To address this issue, a new supramolecular regulation strategy was developed, which could precisely control the preparation of pillar[]arene-based SPN materials with excellent mechanical properties by adjusting the polymer network structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!