Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide (NO) have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which may reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways, (ii) the concentrations in the tracheo-bronchial lining fluid, (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, the model illuminates the discrepancies between observed and theoretically predicted blood-breath ratios of acetone during resting conditions, i.e., in steady state. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases and thus is expected to have general relevance for a wider range of blood-borne inert gases. The chief intention of the present modeling study is to provide mechanistic relationships for further investigating the exhalation kinetics of acetone and other water-soluble species. This quantitative approach is a first step towards new guidelines for breath gas analyses of volatile organic compounds, similar to those for nitric oxide.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00285-010-0398-9DOI Listing

Publication Analysis

Top Keywords

nitric oxide
16
volatile organic
12
organic compounds
12
breath gas
8
exhaled breath
8
breathing patterns
8
gas exchange
8
systemic concentrations
8
classical farhi
8
breath
7

Similar Publications

The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.

View Article and Find Full Text PDF

Background/aims: Hepatocellular carcinoma (HCC) is a malignant cancer with an increasing incidence worldwide. Although numerous efforts have been made to identify effective therapies for HCC, current strategies have limitations. We present a new approach for targeting L-arginine and argininosuccinate synthetase 1 (ASS1).

View Article and Find Full Text PDF

[Characteristics of type 2 inflammation in nocturnal asthma and evaluation of the effectiveness of inhaled corticosteroids combination therapy].

Zhonghua Yi Xue Za Zhi

January 2025

Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou510515, China.

To investigate the characteristics of type 2 inflammation in patients with nocturnal asthma, and analyze the improvement of asthma symptoms after the use of inhaled corticosteroids (ICS) combined with different long-acting bronchodilators. Data of 231 asthma patients who first visited the Respiratory and Critical Care Medical Clinic of Nanfang Hospital of Southern Medical University from January 2020 to June 2023 and had positive bronchodilator tests (BDT), were retrospectively analyzed. These patients were divided into nocturnal asthma group and non-nocturnal asthma group based on the presence or absence of nocturnal symptoms.

View Article and Find Full Text PDF

Scoping review of initiation criteria for inhaled nitric oxide in preterm infants (born <34 weeks) after 7 days of age.

BMJ Open

December 2024

Research and Development Center for New Medical Frontiers, Department of Advanced Medicine, Division of Neonatal Intensive Care Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.

Objectives: Inhaled nitric oxide (iNO) is a known treatment for pulmonary hypertension (PH) associated with bronchopulmonary dysplasia in preterm infants after 7 days of age (postacute phase). However, a consensus regarding the optimal criteria for initiating iNO therapy in this population in the postacute phase is currently lacking. This study, therefore, aimed to identify the criteria for initiating iNO therapy, alongside the associated clinical and echocardiographic findings, in this population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!