Postprandial endothelial function, inflammation, and oxidative stress in obese children and adolescents.

Obesity (Silver Spring)

Department of Pediatrics, Division of Epidemiology and Clinical Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA.

Published: June 2011

AI Article Synopsis

  • Studies indicate that consuming glucose may impair endothelial function in adults, and this research aimed to explore a similar effect in obese youth.
  • A group of 34 obese children and adolescents underwent tests to assess their endothelial function, inflammation, and oxidative stress before and after consuming glucose.
  • The results showed no significant change in endothelial function or inflammation levels, but there were correlations between glucose levels and both endothelial function and oxidative stress, suggesting potential implications for those with glucose tolerance issues.

Article Abstract

Most studies in adults suggest that acute glucose consumption induces a transient impairment in endothelial function. We hypothesized that obese youth would demonstrate reduced endothelial function and increased inflammation and oxidative stress following acute glucose ingestion and that transient elevations in plasma glucose would correlate with endothelial dysfunction, inflammation, and oxidative stress. Thirty-four obese (BMI ≥ 95th percentile) children and adolescents (age 12.4 ± 2.6 years; BMI = 37.9 ± 6.7 kg/m2; 50% females) underwent measurement of endothelial function (reactive hyperemic index (RHI)), glucose, insulin, C-reactive protein (CRP), interleukin-6 (IL-6), circulating oxidized low-density lipoprotein (oxLDL), and myeloperoxidase (MPO) in a fasting state and at 1- and 2-h following glucose ingestion. Repeated measures ANOVA with Tukey post-tests and Pearson correlations were performed. Glucose and insulin levels significantly increased at 1- and 2-h (all P values < 0.001). Compared to baseline, there were no statistically significant differences in 1- and 2-h RHI, CRP, IL-6, and oxLDL. However, MPO significantly decreased at the 1- (P < 0.05) and 2-h (P < 0.001) time points. At the 1-h time point, glucose level was significantly inversely correlated with RHI (r = -0.40, P < 0.05) and at the 2-h time point, glucose level was positively correlated with MPO (r = 0.40, P < 0.05). An acute oral glucose load does not reduce endothelial function or increase levels of inflammation or oxidative stress in obese youth. However, associations of postprandial hyperglycemia with endothelial function and oxidative stress may have implications for individuals with impaired glucose tolerance or frank type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/oby.2010.318DOI Listing

Publication Analysis

Top Keywords

endothelial function
24
oxidative stress
20
inflammation oxidative
16
glucose
10
stress obese
8
children adolescents
8
acute glucose
8
obese youth
8
glucose ingestion
8
glucose insulin
8

Similar Publications

Vascularization of human islets by adaptable endothelium for durable and functional subcutaneous engraftment.

Sci Adv

January 2025

Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.

View Article and Find Full Text PDF

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

The present study aims to examine the effect of 4 h of continuous sitting on cerebral endothelial function, which is a crucial component of cerebral blood flow regulation. We hypothesized that 4 h of sitting may impair cerebral endothelial function similarly to how it affects lower limb vasculature. Thirteen young, healthy participants were instructed to remain seated for 4 h without moving their lower limbs.

View Article and Find Full Text PDF

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Cardiometabolic diseases (CMD) are leading causes of death and disability worldwide, with complex pathophysiological mechanisms in which inflammation plays a crucial role. This review aims to elucidate the molecular and cellular mechanisms within the inflammatory microenvironment of atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis, oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate immune cells contributing to foam cell formation and arterial wall thickening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!