Background: Hypertension (HTN) may lead to left ventricular hypertrophy and vascular dysfunction, which are independent factors for adverse cardiovascular outcomes. We hypothesized that decreased blood pressure by percutaneous transluminal renal angioplasty (PTRA) would improve the function and architecture of coronary microvessels, in association with decreased inflammation and fibrosis.
Methods: Three groups of pigs were studied: normal, HTN, and HTN+PTRA. After 6 weeks of renovascular HTN, induced by placing a local-irritant coil in the renal artery, pigs underwent PTRA or sham. Four weeks later multidetector-computed tomography (CT) was used to assess systolic, diastolic, and microvascular function, and responses to adenosine. Microvascular architecture, oxygen sensors, inflammation, and fibrosis were then explored in cardiac tissue.
Results: PTRA successfully decreased blood pressure and left ventricular hypertrophy. Basal fractional vascular volume (FVV) was similar among the groups, but its response to adenosine was significantly attenuated in HTN, whereas microvascular permeability (MP) and response to adenosine were greater than normal. Both were restored by PTRA. These were accompanied by increased myocardial expression of hypoxia-inducible factor (HIF)-1α, inflammation, and microvascular remodeling, including increased density of epicardial microvessels (20-200 µm), as well as cardiac diastolic dysfunction, all of which improved by reversal of HTN. However, PTRA only partially decreased myocardial fibrosis.
Conclusions: Reversal of early renovascular HTN improved coronary microvascular function and architecture and reversed myocardial hypertrophy and diastolic dysfunction, in association with decreased levels of myocardial ischemia and inflammation markers, underscoring the benefits of blood pressure normalization for preservation of cardiovascular function and structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244349 | PMC |
http://dx.doi.org/10.1038/ajh.2010.259 | DOI Listing |
Cardiovasc Revasc Med
December 2024
Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, United States of America.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
J Clin Med
January 2025
Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, New York, NY 10467, USA.
Primary percutaneous coronary intervention (PCI) has revolutionized the management of ST-elevation myocardial infarction (STEMI), markedly improving patient outcomes. Despite technological advancements, pharmacological innovations, and refined interventional techniques, STEMI prognosis remains burdened by a persistent incidence of cardiac death and heart failure (HF), with mortality rates plateauing over the last decade. This review examines current practices in primary PCI, focusing on critical factors influencing patient outcomes.
View Article and Find Full Text PDFJ Clin Med
January 2025
My Houston Surgeons, 9230 Katy Freeway, Suite 600, Houston, TX 77055, USA.
Removal of the rib and adjacent cartilage is a common step for exposure of the recipient chest vessels in free-flap breast reconstructions. However, this adds both short- and long-term morbidity to the procedure. We describe our experience in avoiding rib removal in microvascular breast reconstruction.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria.
Drug development for human disease relies on preclinical model systems such as human cell cultures and animal experiments before therapeutic treatments can ultimately be tested on humans in clinical studies. We here describe the generation of a novel human cell line (HLMVEC/SVTERT289) that we generated by transfection of microvascular endothelial cells from healthy donor lung tissue with the catalytic domain of telomerase and the SV40 large T/small t-antigen. These cells exhibited satisfactory growth characteristics and largely maintained their native characteristics, including morphology, cell surface marker expression, angiogenic potential and the protein composition of secreted extracellular vesicles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!