We present a new approach to genotyping based on multiplexed shotgun sequencing that can identify recombination breakpoints in a large number of individuals simultaneously at a resolution sufficient for most mapping purposes, such as quantitative trait locus (QTL) mapping and mapping of induced mutations. We first describe a simple library construction protocol that uses just 10 ng of genomic DNA per individual and makes the approach accessible to any laboratory with standard molecular biology equipment. Sequencing this library results in a large number of sequence reads widely distributed across the genomes of multiplexed bar-coded individuals. We develop a Hidden Markov Model to estimate ancestry at all genomic locations in all individuals using these data. We demonstrate the utility of the approach by mapping a dominant marker allele in D. simulans to within 105 kb of its true position using 96 F1-backcross individuals genotyped in a single lane on an Illumina Genome Analyzer. We further demonstrate the utility of our method by genetically mapping more than 400 previously unassembled D. simulans contigs to linkage groups and by evaluating the quality of targeted introgression lines. At this level of multiplexing and divergence between strains, our method allows estimation of recombination breakpoints to a median of 38-kb intervals. Our analysis suggests that higher levels of multiplexing and/or use of strains with lower levels of divergence are practicable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065708PMC
http://dx.doi.org/10.1101/gr.115402.110DOI Listing

Publication Analysis

Top Keywords

multiplexed shotgun
8
recombination breakpoints
8
large number
8
demonstrate utility
8
mapping
6
shotgun genotyping
4
genotyping rapid
4
rapid efficient
4
efficient genetic
4
genetic mapping
4

Similar Publications

Unlabelled: Whooping cough (pertussis) has re-emerged despite high vaccine coverage in Australia and many other countries worldwide, partly attributable to genetic adaptation of the causative organism, to vaccines. Therefore, genomic surveillance has become essential to monitor circulating strains for these genetic changes. However, increasing uptake of PCR for the diagnosis of pertussis has affected the availability of cultured isolates for typing.

View Article and Find Full Text PDF

Background: Shotgun metagenomic next-generation sequencing (mNGS) is widely used to detect pathogens in bronchoalveolar lavage fluid (BALF). However, mNGS is complex and expensive. This study explored the feasibility of targeted next-generation sequencing (tNGS) in distinguishing lower respiratory tract infections in clinical practice.

View Article and Find Full Text PDF

Fecal IgE Analyses Reveal a Role for Stratifying Peanut-Allergic Patients.

J Investig Allergol Clin Immunol

July 2024

Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.

Background And Objective: Peanut allergy (PA) is an IgE-mediated food allergy with variable clinical outcomes. Mild-to-severe symptoms affect various organs and, often, the gastrointestinal tract. The role of intestine-derived IgE antibodies in astrointestinal PA symptoms is poorly understood.

View Article and Find Full Text PDF

Background: Abnormalities in ataxin-2 associated with spinocerebellar ataxia type 2 (SCA2) may lead to widespread disruptions in the proteome. This study was performed to identify dysregulated proteome in SCA2 and to explore its clinical-radiological correlations.

Methods: Cerebrospinal fluid (CSF) samples from 21 genetically confirmed SCA2 were subjected to shotgun proteome analysis using mass spectrometry (MS) and tandem mass tag (TMT)-based multiplexing.

View Article and Find Full Text PDF

Serum Amyloid A3 Fuels a Feed-Forward Inflammatory Response to the Bacterial Amyloid Curli in the Enteric Nervous System.

Cell Mol Gastroenterol Hepatol

June 2024

Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Belgium; Antwerp Centre for Advanced Microscopy, University of Antwerp, Antwerp, Belgium; μNeuro Research Centre of Excellence, University of Antwerp, Antwerp, Belgium. Electronic address:

Background & Aims: Mounting evidence suggests the gastrointestinal microbiome is a determinant of peripheral immunity and central neurodegeneration, but the local disease mechanisms remain unknown. Given its potential relevance for early diagnosis and therapeutic intervention, we set out to map the pathogenic changes induced by bacterial amyloids in the gastrointestinal tract and its enteric nervous system.

Methods: To examine the early response, we challenged primary murine myenteric networks with curli, the prototypical bacterial amyloid, and performed shotgun RNA sequencing and multiplex enzyme-linked immunosorbent assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!