Although protein-protein interaction (PPI) networks have been shown to offer a systems-wide view of cellular processes, only a few plant PPI maps are available. Recently, the core cell cycle of Arabidopsis thaliana has been analyzed by three independent PPI technologies, including yeast two-hybrid systems, bimolecular fluorescence complementation and tandem affinity purification. Here, we merge the three interactomes with literature-curated and computationally predicted interactions, paving the way for a comprehensive picture of the plant core cell cycle machinery. Platform-specific interactions unveil the strengths and weaknesses of each detection method and give insights into the nature of the interactions among cell cycle proteins. Moreover, comparison of the obtained data reveals that a complete interactome can only be obtained when multiple techniques are applied in parallel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tplants.2010.12.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!