Raman spectroscopy for the process analysis of the manufacturing of a suspension metered dose inhaler.

J Pharm Biomed Anal

Merck Respiratory Product Development, 556 Morris Avenue, S7-A2-2123, Summit, NJ 07901, United States.

Published: April 2011

The purpose of this research was to demonstrate the utility of Raman spectroscopy for process analysis of a suspension metered dose inhaler manufacturing process. Chemometric models were constructed for the quantification of ethanol and active pharmaceutical ingredient such that both could be monitored in real-time during the compounding and filling operations via tank measurements and recirculation line flow-cell measurements. Different spectral preprocessing techniques were used to delineate the effects of mixing speed and temperature changes from actual concentration effects. Raman spectroscopy offers advantages in time savings and quality of information over the standard methods of analysis for respiratory formulations, such as a drug content assay via HPLC and ethanol testing via GC. The successful implementation of this work will allow formulation scientists to quantitatively assess both the formulation (e.g., the concentration of active pharmaceutical ingredient (API) and ethanol), as well as the manufacturing process (e.g., determination of mixing endpoints) in real-time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2010.12.007DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
spectroscopy process
8
process analysis
8
suspension metered
8
metered dose
8
dose inhaler
8
manufacturing process
8
active pharmaceutical
8
pharmaceutical ingredient
8
process
4

Similar Publications

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

Characterizing the heterogeneous contamination of commercial paper and board food packaging at different scales.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

UMR SayFood 0782, Université Paris-Saclay, INRAE, Palaiseau, AgroParisTech, France.

Assessing the contamination of paper and board (P&B) food packaging materials poses significant challenges due to the sensitivity limits of analytical methods and the low precision of sampling processes. This study aims to enhance the understanding of P&B food packaging contamination by investigating the distribution of contaminants at different scales using a combination of chromatographic and spectroscopic techniques. A total of 36 substances were targeted, including phthalates, photoinitiators, and bisphenol A.

View Article and Find Full Text PDF

Analysis of Drug Molecules in Living Cells.

Crit Rev Anal Chem

January 2025

Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK.

Cells are the fundamental units of life, comprising a highly concentrated and complex assembly of biomolecules that interact dynamic ally across spatial and temporal scales. Living cells are constantly undergoing dynamic processes, therefore, to understand the interactions between drug molecules and living cells is of paramount importance in the biomedical sciences and pharmaceutical development. Compared with traditional end-point assays and fixed cell analysis, analysis of drug molecules in living cells can provide more insight into the effects of drugs on cells in real-time and allowing for a better understanding of drug mechanisms and effects, which will contribute to the development of drug developing and testing and personalize medicine.

View Article and Find Full Text PDF

The direct electrochemical conversion of bicarbonate solutions (i.e., captured CO) has emerged as a sustainable approach for integrating CO capture and utilization compared to the traditional independent and sequential route.

View Article and Find Full Text PDF

Cartilage is a connective tissue composed of mainly water, collagen (COL) and proteoglycans (PGs) including chondroitin sulfate (CS). Near-infrared (NIR) spectroscopy is adequate for examination of soft and hard tissues with large amount of water non-destructively and non-invasively. We measured tablets containing CS and COL using NIR spectroscopy to develop an evaluation method for PGs in cartilage non-destructively and non-invasively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!