We report image blurring and energy broadening effects in energy-filtered XPEEM when illuminating the specimen with soft X-rays at high flux densities. With a flux of 2 × 10(13)photons/s, the lateral resolution in XPEEM imaging with either core level or secondary electrons is degraded to more than 50 nm. Fermi level broadening up to several hundred meV and spectral shift to higher kinetic energies are also systematically observed. Simple considerations suggest that these artifacts result from Boersch and Loeffler effects, and that the electron-electron interactions are strongest in the initial part of the microscope optical path. Implications for aberration corrected instruments are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2010.12.020 | DOI Listing |
Ultramicroscopy
January 2025
National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark (DTU), Kgs. Lyngby, Denmark. Electronic address:
Advances in analytical scanning transmission electron microscopy (STEM) and in microelectronic mechanical systems (MEMS) based microheaters have enabled in-situ materials' characterization at the nanometer scale at elevated temperature. In addition to resolving the structural information at elevated temperatures, detailed knowledge of the local temperature distribution inside the sample is essential to reveal thermally induced phenomena and processes. Here, we investigate the accuracy of plasmon energy expansion thermometry (PEET) as a method to map the local temperature in a tungsten (W) lamella in a range between room temperature and 700 °C.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Applied Chemistry, Faculty of Chemistry, Razi University, 67144-14971, Kermanshah, Iran.
Low performance and the high fouling tendency of Polyetherimide (PEI) membranes prevent their widespread commercial utility. In this study, we utilized a deep eutectic solvent (DES) as a versatile agent for surface modification of the PEI membrane using a simple and sustainable method. To attain an efficient PEI membrane, modeling and optimization of the modification condition were conducted via response surface methodology (RSM).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Xidian University, Xi'an 710071, PR China.
Commercial SnO nanocrystals used for producing electron transporting layers (ETLs) of perovskite solar cells (PSC) are prone to aggregation at room temperature and contain many structural defects. Herein, we report that the LiOH additive can simultaneously delay the aggregation and donate the beneficial aging effect to SnO nanocrystals. The resulting SnO ETLs show the desired characteristics, including a broadened absorption range, reduced defects, improved transporting properties, and decreased work function.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, NO. 1 DAXUE ROAD, Xuzhou, Jiangsu, 221116, China.
With the increasing demand for thermal management, phase change materials (PCMs) have garnered widespread attention due to their unique advantages in energy storage and temperature regulation. However, traditional PCMs present challenges in modification, with commonly used physical methods facing stability and compatibility issues. This study introduces a simple and effective chemical method by synthesizing seven ester-based PCMs through chemical reactions involving lauric acid (LA) and seven different alcohols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!