The effect of diallyl disulfide (DADS) on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in PC3 human prostate cancer cells is unclear. This study explored whether DADS changed [Ca(2+)](i) in PC3 cells by using fura-2. DADS at 50-1000 μM increased [Ca(2+)](i) in a concentration-dependent manner. The signal was reduced by removing Ca(2+). DADS-induced Ca(2+) influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators; but was inhibited by aristolochic acid. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) nearly abolished DADS-induced [Ca(2+)](i) rise. Incubation with DADS inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 did not alter DADS-induced [Ca(2+)](i) rise. At 500-1000 μM, DADS killed cells in a concentration-dependent manner. The cytotoxic effect of DADS was partly reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Propidium iodide staining suggests that DADS (500 μM) induced apoptosis in a Ca(2+)-independent manner. Annexin V/PI staining further shows that 10 μM and 500 μM DADS both evoked apoptosis. DADS also increased reactive oxygen species (ROS) production. Collectively, in PC3 cells, DADS induced [Ca(2+)](i) rise probably by causing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via phospholipase A(2)-sensitive channels. DADS induced Ca(2+)-dependent cell death, ROS production, and Ca(2+)-independent apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2010.12.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!