Computational and experimental investigation of needle-shaped crystal breakage.

Int J Pharm

Department of Chemical Engineering, Institute of Chemical Technology, Technická 5 166 28 Prague, Czech Republic.

Published: April 2011

Needle-shaped crystals are a common occurrence in many pharmaceutical and fine chemicals processes. Even if the particle size distribution (PSD) obtained in a crystallization step can be controlled by the crystal growth kinetics and hydrodynamic conditions, further fluid-solid separation steps such as filtration, filter washing, drying, and subsequent solids handling can often lead to uncontrolled changes in the PSD due to breakage. In this contribution we present a combined computational and experimental methodology for determining the breakage kernel and the daughter distribution functions of needle-shaped crystals, and for population balance modeling of their breakage. A discrete element model (DEM) of needle-shaped particle breakage was first used in order to find out the appropriate types of the breakage kernel and the daughter distribution functions. A population balance model of breakage was then formulated and used in conjunction with experimental data in order to determine the material-specific parameters appearing in the breakage functions. Quantitative agreement between simulation and experiment has been obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2010.12.031DOI Listing

Publication Analysis

Top Keywords

computational experimental
8
breakage
8
needle-shaped crystals
8
breakage kernel
8
kernel daughter
8
daughter distribution
8
distribution functions
8
population balance
8
experimental investigation
4
needle-shaped
4

Similar Publications

The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates.

View Article and Find Full Text PDF

TiO-Based Implantable Memristor for Biomedical Engineering.

ACS Appl Mater Interfaces

January 2025

Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

Implantable memristors are considered an emerging electronic technology that can simulate brain memory function and demonstrate some promising applications in the biomedical field. However, it remains a critical challenge to enhance their long-term stability and biocompatibility in implantation environments. In this work, an implantable memristor has been successfully fabricated based on TiO using magnetron sputtering.

View Article and Find Full Text PDF

Joint action partners modulate the first step of an action sequence to communicate a distal goal.

Acta Psychol (Amst)

January 2025

Department of Linguistics, Cognitive Science, and Semiotics, Aarhus University, Jens Chr. Skous Vej 2, 1485-638 Aarhus, Denmark; Interacting Minds Centre, Aarhus University, Jens Chr. Skous Vej 2, 1485-638 Aarhus, Denmark. Electronic address:

When two co-actors perform a joint action, they often communicatively modulate their instrumental actions so as to facilitate each other's predictions of their immediate, proximal goals. Here, we ask whether co-actors would also engage in such "sensorimotor communication" for distal goals, specifically those that result from a two-step action sequence. To address this question, we asked pairs of participants to work together to deliver an animated box to one of two delivery locations displayed on a computer screen.

View Article and Find Full Text PDF

Automated ultrasonography of hepatocellular carcinoma using discrete wavelet transform based deep-learning neural network.

Med Image Anal

January 2025

Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea. Electronic address:

This study introduces HCC-Net, a novel wavelet-based approach for the accurate diagnosis of hepatocellular carcinoma (HCC) from abdominal ultrasound (US) images using artificial neural networks. The HCC-Net integrates the discrete wavelet transform (DWT) to decompose US images into four sub-band images, a lesion detector for hierarchical lesion localization, and a pattern-augmented classifier for generating pattern-enhanced lesion images and subsequent classification. The lesion detection uses a hierarchical coarse-to-fine approach to minimize missed lesions.

View Article and Find Full Text PDF

A major threat to world health is the high death rate from gastrointestinal (GI) cancer, especially in Asia, South America, and Europe. The new approaches are needed because of the complexity and heterogeneity of gastrointestinal (GI) cancer, which has made the development of effective treatments difficult. To investigate the potential of peptide-based therapies that target the P21 Activated Kinase 1 (PAK1) in GI cancer, we are using the DBsORF database to predict peptides from the genomes of two bacterial strains: Lactobacillus plantarum and Pediococcus pentosaceus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!