The diversity of the putative polyphosphate-accumulating genus Tetrasphaera in wastewater treatment systems with enhanced biological phosphorus removal (EBPR) was investigated using the full-cycle rRNA approach combined with microautoradiography and histochemical staining. 16S rRNA actinobacterial gene sequences were retrieved from different full-scale EBPR plants, and the sequences belonging to the genus Tetrasphaera (family Intrasporangiaceae) were found to form three clades. Quantitative FISH analyses of the communities in five full-scale EBPR plants using 10 new oligonucleotide probes were carried out. The results showed that the probe-defined Tetrasphaera displayed different morphologies and constituted up to 30% of the total biomass. It was shown that active uptake of orthophosphate and formation of polyphosphate took place in most of the probe-defined Tetrasphaera populations. However, aerobic uptake of orthophosphate only took place after uptake of certain carbon sources under anaerobic conditions and these were more diverse than hitherto assumed: amino acids, glucose, and for some also acetate. Tetrasphaera seemed to occupy a slightly different ecological niche compared with 'Candidatus Accumulibacter' contributing to a functional redundancy and stability of the EBPR process.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2011.01049.xDOI Listing

Publication Analysis

Top Keywords

putative polyphosphate-accumulating
8
genus tetrasphaera
8
full-scale ebpr
8
ebpr plants
8
probe-defined tetrasphaera
8
uptake orthophosphate
8
tetrasphaera
5
high diversity
4
diversity abundance
4
abundance putative
4

Similar Publications

A comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge for nutrient removal in full-scale wastewater treatment plants.

Chemosphere

August 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

Understanding the microbial community structure of sludge is crucial for improving the design, operation and optimisation of full-scale wastewater treatment plants (WWTPs). This study aimed to have a comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge from two full-scale sequential batch reactors-based WWTPs with nutrient removal for the first time. To better understand key functional bacteria such as polyphosphate accumulating bacteria (PAOs), competitive bacteria such as glycogen accumulating bacteria (GAOs) and nitrifying bacteria for both nitrogen and phosphorus removal, another two full-scale WWTPs with only carbon (C) removal and C and nitrogen (N) removal were compared too.

View Article and Find Full Text PDF

With the rapid growing availability of metagenome assembled genomes (MAGs) and associated metabolic models, the identification of metabolic potential in individual community members has become possible. However, the field still lacks an unbiassed systematic evaluation of the generated metagenomic information to uncover not only metabolic potential, but also feasibilities of these models under specific environmental conditions. In this study, we present a systematic analysis of the metabolic potential in species of "Candidatus Accumulibacter", a group of polyphosphate-accumulating organisms (PAOs).

View Article and Find Full Text PDF

The impact of pH on the anaerobic and aerobic metabolism of Tetrasphaera-enriched polyphosphate accumulating organisms.

Water Res X

May 2023

UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal.

Members of the genus are putative polyphosphate accumulating organisms (PAOs) that have been found in greater abundance than in many full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants worldwide. Nevertheless, previous studies on the effect of environmental conditions, such as pH, on the performance of EBPR have focused mainly on the response of to pH changes This study examines the impact of pH on a PAO enriched culture, over a pH range from 6.0 to 8.

View Article and Find Full Text PDF

Natural microbial communities consist of closely related taxa that may exhibit phenotypic differences and inhabit distinct niches. However, connecting genetic diversity to ecological properties remains a challenge in microbial ecology due to the lack of pure cultures across the microbial tree of life. " Accumulibacter phosphatis" (Accumulibacter) is a polyphosphate-accumulating organism that contributes to the enhanced biological phosphorus removal (EBPR) biotechnological process for removing excess phosphorus from wastewater and preventing eutrophication from downstream receiving waters.

View Article and Find Full Text PDF

Members of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!