We investigate the phase diagram of bosons interacting via Feshbach-resonant pairing interactions in a one-dimensional lattice. Using large scale density matrix renormalization group and field theory techniques we explore the atomic and molecular correlations in this low-dimensional setting. We provide compelling evidence for an Ising deconfinement transition occurring between distinct superfluids and extract the Ising order parameter and correlation length of this unusual superfluid transition. This is supported by results for the entanglement entropy which reveal both the location of the transition and critical Ising degrees of freedom on the phase boundary.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.106.015303DOI Listing

Publication Analysis

Top Keywords

ising deconfinement
8
deconfinement transition
8
ising
4
transition
4
transition feshbach-resonant
4
feshbach-resonant superfluids
4
superfluids investigate
4
investigate phase
4
phase diagram
4
diagram bosons
4

Similar Publications

We investigate the nature of the deconfinement transitions in three-dimensional lattice Abelian Higgs models, in which a complex scalar field of integer charge Q≥2 is minimally coupled with a compact U(1) gauge field. Their phase diagram presents two phases separated by a transition line where static charges q, with q View Article and Find Full Text PDF

Fermion Disorder Operator at Gross-Neveu and Deconfined Quantum Criticalities.

Phys Rev Lett

June 2023

Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany.

The fermion disorder operator has been shown to reveal the entanglement information in 1D Luttinger liquids and 2D free and interacting Fermi and non-Fermi liquids emerging at quantum critical points (QCPs) [W. Jiang et al., arXiv:2209.

View Article and Find Full Text PDF

Matter-free lattice gauge theories (LGTs) provide an ideal setting to understand confinement to deconfinement transitions at finite temperatures, which is typically due to the spontaneous breakdown (at large temperatures) of the center symmetry associated with the gauge group. Close to the transition, the relevant degrees of freedom (Polyakov loop) transform under these center symmetries, and the effective theory depends on only the Polyakov loop and its fluctuations. As shown first by Svetitsky and Yaffe, and subsequently verified numerically, for the U(1) LGT in (2+1) dimensions, the transition is in the 2D XY universality class, while for the Z_{2} LGT, it is in the 2D Ising universality class.

View Article and Find Full Text PDF

Recent atomic physics experiments and numerical works have reported complementary signatures of the emergence of a topological quantum spin liquid in models with blockade interactions. However, the specific mechanism stabilizing such a phase remains unclear. Here, we introduce an exact relation between an Ising-Higgs lattice gauge theory on the kagome lattice and blockaded models on Ruby lattices.

View Article and Find Full Text PDF

Scalar gauge-Higgs models with discrete Abelian symmetry groups.

Phys Rev E

May 2022

Dipartimento di Fisica, Università di Pisa, and INFN, Sezione di Pisa Largo Pontecorvo 3, I-56127 Pisa, Italy.

We investigate the phase diagram and the nature of the phase transitions of three-dimensional lattice gauge-Higgs models obtained by gauging the Z_{N} subgroup of the global Z_{q} invariance group of the Z_{q} clock model (N is a submultiple of q). The phase diagram is generally characterized by the presence of three different phases, separated by three distinct transition lines. We investigate the critical behavior along the two transition lines characterized by the ordering of the scalar field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!