Route to ferromagnetism in organic polymers.

Phys Rev Lett

Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, Augsburg, Germany.

Published: December 2010

Employing a rigorous theoretical method for the construction of exact many-electron ground states we prove that interactions can be employed to tune a bare dispersive band structure such that it develops a flat band. Thereby, we show that pentagon-chain polymers with electron densities above half filling may be designed to become ferromagnetic or half metallic.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.105.266403DOI Listing

Publication Analysis

Top Keywords

route ferromagnetism
4
ferromagnetism organic
4
organic polymers
4
polymers employing
4
employing rigorous
4
rigorous theoretical
4
theoretical method
4
method construction
4
construction exact
4
exact many-electron
4

Similar Publications

Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.

View Article and Find Full Text PDF

Background: Foreign body (coins, magnets, button batteries, and metallic foreign bodies) ingestion is common and causes significant morbidity and mortality in children aged six months to three years. Endoscopic removal of swallowed foreign substances is widely accepted, but sedation and general anesthesia may be required to alleviate pain and anxiety during the procedure. Dexmedetomidine is used as a sedative, hypnotic, anxiolytic, and analgesic.

View Article and Find Full Text PDF

Investigating material properties is essential to assessing their application potential. While computational methods allow for a fast prediction of the material structure and properties, experimental validation is essential to determining the ultimate material potential. Herein, we report the synthesis and experimental magnetic properties of three previously reported Kagome compounds in the Li-Fe-Ge system.

View Article and Find Full Text PDF

Enhancing Photoelectrochemical Water Oxidation Using Ferromagnetic Materials and Magnetic Fields.

J Am Chem Soc

December 2024

Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.

Article Synopsis
  • Photoelectrochemical (PEC) water splitting is an emerging method for hydrogen production, but its efficiency is hindered by issues like carrier recombination and slow water oxidation.
  • The study shows that adding a ferromagnetic coating (FeTiO) to a photoanode (BiVO) and using an external magnetic field enhances solar water oxidation performance by improving charge separation and catalytic efficiency.
  • The findings suggest that this magnetic field technique can be applied to other metal oxide photoanodes, indicating a new approach to boost PEC performance in nonmagnetic semiconductor materials.
View Article and Find Full Text PDF

Interfaces between twisted 2D materials host a wealth of physical phenomena originating from the long-scale periodicity associated with the resulting moiré structure. Besides twisting, an alternative route to create structures with comparably long-or even longer-periodicities is inducing a differential strain between adjacent layers in a van der Waals (vdW) material. Despite recent theoretical efforts analyzing its benefits, this route has not yet been implemented experimentally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!