We use Fermi-liquid relations to address the accuracy of conductances calculated from the single-particle states of exact Kohn-Sham (KS) density functional theory. We demonstrate a systematic failure of this procedure for the calculation of the conductance, and show how it originates from the lack of renormalization in the KS spectral function. In certain limits this failure can lead to a large overestimation of the true conductance. We also show, however, that the KS conductances can be accurate for single-channel molecular junctions and systems where direct Coulomb interactions are strongly dominant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.105.216408 | DOI Listing |
J Chem Phys
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Nadia, Mohanpur 741246, WB, India.
In this paper, we demonstrate the performance of several density-based methods in predicting the inversion of S1 and T1 states of a few N-heterocyclic triangulene based fused ring molecules (popularly known as INVEST molecules) with an eye to identify a well performing but cost-effective preliminary screening method. Both conventional linear-response time-dependent density functional theory (LR-TDDFT) and ΔSCF methods (namely maximum overlap method, square-gradient minimization method, and restricted open-shell Kohn-Sham) are considered for excited state computations using exchange-correlation (XC) functionals from different rungs of Jacob's ladder. A well-justified systematism is observed in the performance of the functionals when compared against fully internally contracted multireference configuration interaction singles and doubles and/or equation of motion coupled-cluster singles and doubles (EOM-CCSD), with the most important feature being the capture of spin-polarization in the presence of correlation.
View Article and Find Full Text PDFJACS Au
November 2024
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
To understand the recently observed enigmatic nonadiabatic energy transfer for hyperthermal H atom scattering from a semiconductor surface, Ge(111)(2 × 8), we present a mixed quantum-classical nonadiabatic molecular dynamics model based on the time-dependent evolution of Kohn-Sham orbitals and a classical path approximation. Our results suggest that facile nonadiabatic electronic transitions from the valence band to the conduction band occur selectively at the rest atom site, where surface states are doubly occupied, but not at the adatom site, where empty surface states are localized. This drastic site specificity can be attributed to the changes of the local band structure upon energetic H collisions at different surface sites, leading to transient near degeneracies and significant couplings between occupied and unoccupied orbitals at the rest atom but not at the adatom.
View Article and Find Full Text PDFChem Sci
December 2024
Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30-387 Kraków Poland +48 12 686 24 89.
Dalton Trans
December 2024
Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
This research presents, for the first time, a comprehensive and rigorous investigation of ruthenium(II) chalcogenonitrosyl bonding situations in two sets of coordination compounds: [Ru(NE)Cl(L)] (1a-4a) and [Ru(NE)Cl(L)] (1b-4b), where E = O, S, Se, Te. Prior to and following the one-electron reduction, the Ru-NE bonding situations were subjected to analysis. The calculated geometric parameters indicate that both the Ru-NE and N-E bond lengths are susceptible to variation depending on the nature of the chalcogen employed.
View Article and Find Full Text PDFEnviron Sci Technol
November 2024
Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland.
Magnetite nanoparticles (MNPs) play an important role in geological and environmental systems because of their redox reactivity and ability to sequester a wide range of metals and metalloids. X-ray absorption spectroscopy conducted at metal and metalloid edges has suggested that the magnetite {111} faces of octahedrally shaped nanoparticles play a dominant role in the redox and sorption processes of these elements. However, studies directly probing the magnetite surfaces, especially in their fully solvated state, are scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!