We present a method to efficiently sort orbital angular momentum (OAM) states of light using two static optical elements. The optical elements perform a Cartesian to log-polar coordinate transformation, converting the helically phased light beam corresponding to OAM states into a beam with a transverse phase gradient. A subsequent lens then focuses each input OAM state to a different lateral position. We demonstrate the concept experimentally by using two spatial light modulators to create the desired optical elements, applying it to the separation of eleven OAM states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.105.153601 | DOI Listing |
Sci Rep
January 2025
Department of Physics, College of Science, University of Thi-Qar, Nasiriya, Iraq.
This work studies the generation of the orbital angular momentum (OAM) beam in the double quantum dot-metal nanoparticle (DQD-MNP) system under the application of the OAM beam. First, an analytical model is derived to attain the relations of probe and generated fields as a distance function in the DQD-MNP system under OAM applied field and spontaneously generated coherence (SGC) components. The calculation here is of material property; it differs from others by calculating energy states of the DQDs and the computation of the transition momenta between quantum dot (QD)-QD and QD-wetting layer (WL) transitions.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China. Electronic address:
Hybrid continuous-variable (CV) and discrete-variable (DV) entanglement is an essential quantum resource of hybrid quantum information processing, which enables one to overcome the intrinsic limitations of CV and DV quantum protocols. Besides CV and DV quantum variables, introducing more degrees of freedom provides a feasible approach to increase the information carried by the entangled state. Among all the degrees of freedom of photons, orbital angular momentum (OAM) has potential applications in enhancing the communication capacity of quantum communication and precision of quantum measurement.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2025
Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota Medical School, Minneapolis, MN.
Arterial stiffness is a well-known risk factor for cardiovascular disease. Although estradiol (E2) is known to be cardioprotective, the available data point to a growing cardiovascular disease risk in women before menopause due to post-traumatic stress disorder (PTSD). The present study aimed to investigate the effects of E2 on arterial compliance in trauma-exposed premenopausal women, with and without a clinical diagnosis PTSD.
View Article and Find Full Text PDFQuantum backflow (QB), a counterintuitive interference phenomenon where particles with positive momentum can propagate backward, is important in applications involving light-matter interactions. To date, experimental demonstrations of backflow have been restricted to classical optical systems using techniques such as slit scanning or Shack-Hartmann wavefront sensing, which suffer from low spatial resolution due to the inherent limitations in slit width and lenslet array density. Here, we report an observation of azimuthal backflow (AB) both theoretically and experimentally by employing the weak measurement technique, which enables the precise extraction of photon momentum at each pixel.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!