We demonstrate experimentally that the relativistic electron flow in a dense plasma can be efficiently confined and guided in targets exhibiting a high-resistivity-core-low-resistivity-cladding structure analogous to optical waveguides. The relativistic electron beam is shown to be confined to an area of the order of the core diameter (50 μm), which has the potential to substantially enhance the coupling efficiency of electrons to the compressed fusion fuel in the Fast Ignitor fusion in full-scale fusion experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.105.135001DOI Listing

Publication Analysis

Top Keywords

relativistic electron
8
laser-driven fast
4
fast electron
4
electron collimation
4
collimation targets
4
targets resistivity
4
resistivity boundary
4
boundary demonstrate
4
demonstrate experimentally
4
experimentally relativistic
4

Similar Publications

Epitaxial Stabilization of a Pyrochlore Interface between Weyl Semimetal and Spin Ice.

Nano Lett

January 2025

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.

Pyrochlore materials are known for their exotic magnetic and topological phases arising from complex interactions among electron correlations, band topology, and geometric frustration. Interfaces between different pyrochlore crystals characterized by complex many-body ground states hold immense potential for novel interfacial phenomena due to the strong interactions between these phases. However, the realization of such interfaces has been severely hindered by limitations in material synthesis methods.

View Article and Find Full Text PDF

We make absolute frequency measurements of Cs Rydberg transitions, |6S_{1/2},F=3⟩→|nS_{1/2}(n=23-90)⟩ and |nD_{3/2,5/2}(n=21-90)⟩, with an accuracy of less than 72 kHz. The quantum defect parameters for the measured Rydberg series are the most precise obtained to date. The quantum defect series is terminated at δ_{4}, showing that prior fits requiring higher order quantum defects reflect uncertainties in the observations.

View Article and Find Full Text PDF

Solid-state detectors with a low energy threshold have several applications, including searches of non-relativistic halo dark-matter particles with sub-GeV masses. When searching for relativistic, beyond-the-Standard-Model particles with enhanced cross sections for small energy transfers, a small detector with a low energy threshold may have better sensitivity than a larger detector with a higher energy threshold. In this paper, we calculate the low-energy ionization spectrum from high-velocity particles scattering in a dielectric material.

View Article and Find Full Text PDF

P , T -odd effects in YbCu, YbAg, and YbAu.

J Chem Phys

December 2024

Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

In this work, the molecular enhancement factors of the P,T-odd interactions involving the electron electric dipole moment (Wd) and the scalar-pseudoscalar nucleon-electron couplings (Ws) are computed for the ground state of the bimetallic molecules YbCu, YbAg, and YbAu. These systems offer a promising avenue for creating cold molecules by associating laser-cooled atoms. The relativistic coupled-cluster approach is used in the calculations, and a thorough uncertainty analysis is performed to give accurate and reliable uncertainties to the obtained values.

View Article and Find Full Text PDF

Relativistic EELS scattering cross-sections for microanalysis based on Dirac solutions.

Ultramicroscopy

March 2025

Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United Kingdom. Electronic address:

The rich information of electron energy-loss spectroscopy (EELS) comes from the complex inelastic scattering process whereby fast electrons transfer energy and momentum to atoms, exciting bound electrons from their ground states to higher unoccupied states. To quantify EELS, the common practice is to compare the cross-sections integrated within an energy window or fit the observed spectrum with theoretical differential cross-sections calculated from a generalized oscillator strength (GOS) database with experimental parameters. The previous Hartree-Fock-based and DFT-based GOS are calculated from Schrödinger's solution of atomic orbitals, which does not include the full relativistic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!