Bound entanglement is central to many exciting theoretical results in quantum information processing, but has thus far not been experimentally realized. In this work, we consider a one-parameter family of four-qubit Smolin states. We experimentally produce these states in the polarization of four optical photons produced from parametric down-conversion. Within a range of the parameter, we show that our states are entangled and undistillable, and thus bound entangled. Using these bound-entangled states we demonstrate entanglement unlocking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.105.130501 | DOI Listing |
Entropy (Basel)
December 2024
Department of Physics, University of Maryland, College Park, MD 20742-4111, USA.
We define predictive states and predictive complexity for quantum systems composed of distinct subsystems. This complexity is a generalization of entanglement entropy. It is inspired by the statistical or forecasting complexity of predictive state analysis of stochastic and complex systems theory but is intrinsically quantum.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Controlled quantum teleportation is an important extension of multipartite quantum teleportation, which plays an indispensable role in building quantum networks. Compared with discrete variable counterparts, continuous variable controlled quantum teleportation can generate entanglement deterministically and exhibit higher superiority of the supervisor's authority. Here, we define a measure to quantify the control power in continuous variable controlled quantum teleportation via Greenberger-Horne-Zeilinger-type entangled coherent state channels.
View Article and Find Full Text PDFNat Commun
January 2025
TCM Group, Cavendish Laboratory, Department of Physics, Cambridge, UK.
We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology motivated by recent progress in band geometry. In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds, allowing for parent Hamiltonians whose lowest bands are completely flat and which have the PEPS as unique ground states. Protected by crystalline symmetries, these states evade restrictions on capturing tenfold-way topological features with gapped PEPS.
View Article and Find Full Text PDFSci Rep
December 2024
Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Spain.
Considering a universal deep neural network organized as a series of nested qubit rotations, accomplished by adjustable data re-uploads we analyze its expressivity. This ability to approximate continuous functions in regression tasks is quantified making use of a partial Fourier decomposition of the generated output and systematically benchmarked with the aid of a teacher-student scheme. While the maximal expressive power increases with the depth of the network and the number of qubits, it is fundamentally bounded by the data encoding mechanism.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2024
Physics Department, University of Strathclyde, Glasgow G4 0NG, UK.
The controlled SWAP test for detecting and quantifying entanglement applied to pure qubit states is robust to small errors in the states and efficient for large multi-qubit states (Foulds . 2021 . , 035002 (doi:10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!