Thomson scattering on inhomogeneous targets.

Phys Rev E Stat Nonlin Soft Matter Phys

Institut für Physik, Universität Rostock, D-18051 Rostock, Germany.

Published: November 2010

The introduction of brilliant free-electron lasers enables new pump-probe experiments to characterize warm dense matter states. For instance, a short-pulse optical laser irradiates a liquid hydrogen jet that is subsequently probed with brilliant soft x-ray radiation. The strongly inhomogeneous plasma prepared by the optical laser is characterized with particle-in-cell simulations. The interaction of the soft x-ray probe radiation for different time delays between pump and probe with the inhomogeneous plasma is also taken into account via radiative hydrodynamic simulations. We calculate the respective scattering spectrum based on the Born-Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We can identify plasmon modes that are generated in different target regions and monitor their temporal evolution. Therefore, such pump-probe experiments are promising tools not only to measure the important plasma parameters density and temperature but also to gain valuable information about their time-dependent profile through the target. The method described here can be applied to various pump-probe scenarios by combining optical lasers and soft x ray, as well as x-ray sources.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.82.056404DOI Listing

Publication Analysis

Top Keywords

thomson scattering
8
pump-probe experiments
8
optical laser
8
soft x-ray
8
inhomogeneous plasma
8
scattering inhomogeneous
4
inhomogeneous targets
4
targets introduction
4
introduction brilliant
4
brilliant free-electron
4

Similar Publications

A method to determine electron temperature within a plasma by the spectral analysis of atomic tungsten emission has been explored. The technique was applied to a post-discharge region immediately following a high voltage nanosecond pulsed discharge in air with tungsten electrodes. Atomic tungsten lines are readily observed in the weak emission spectrum within the post-discharge region for many microseconds.

View Article and Find Full Text PDF

We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior.

View Article and Find Full Text PDF

The individual polarization components of nonlinear Thomson scattering arise from the separate dimensions of electron figure-8 motion caused by a linearly polarized laser field. We present the first measurements of nonlinear Thomson scattering in both emission hemispheres. In the electron average rest frame, the shape of the electron figure-8 path is symmetric about the laser polarization dimension.

View Article and Find Full Text PDF

In the "method of four coefficients," electrical resistivity (ρ), Seebeck coefficient (S), Hall coefficient (RH), and Nernst coefficient (Q) of a material are measured and typically fit or modeled with theoretical expressions based on Boltzmann transport theory to glean experimental insights into features of electronic structure and/or charge carrier scattering mechanisms in materials. Although well-defined and readily available reference materials exist for validating measurements of ρ and S, none currently exists for RH or Q. We show that measurements of all four transport coefficients-ρ, S, RH, and Q-can be validated using a single reference sample, namely, the low-temperature Seebeck coefficient Standard Reference Material® (SRM) 3451 (composition Bi2Te3+x) available from the National Institute for Standards and Technology (NIST) without the need for inter-laboratory sample exchange.

View Article and Find Full Text PDF

A new thermal helium beam diagnostic has been implemented in the outer lower divertor of the ASDEX Upgrade tokamak. The purpose of this diagnostic is to measure two-dimensional profiles of electron density (ne) and temperature (Te) with high temporal and spatial resolution. The geometry of the lines of sight is chosen to avoid the influence of prompt recycling and to optimize the resolution without significantly impacting the divertor structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!