By means of numerical simulations and epidemic analysis, the transition point of the stochastic asynchronous susceptible-infected-recovered model on a square lattice is found to be c0=0.1765005(10), where c is the probability a chosen infected site spontaneously recovers rather than tries to infect one neighbor. This point corresponds to an infection/recovery rate of λ(c)=(1-c0)/c0=4.665 71(3) and a net transmissibility of (1-c0)/(1+3c0)=0.538 410(2), which falls between the rigorous bounds of the site and bond thresholds. The critical behavior of the model is consistent with the two-dimensional percolation universality class, but local growth probabilities differ from those of dynamic percolation cluster growth, as is demonstrated explicitly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.82.051921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!