Higher-order Galilean-invariant lattice Boltzmann model for microflows: single-component gas.

Phys Rev E Stat Nonlin Soft Matter Phys

Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore, Singapore.

Published: October 2010

We introduce a scheme which gives rise to additional degree of freedom for the same number of discrete velocities in the context of the lattice Boltzmann model. We show that an off-lattice D3Q27 model exists with correct equilibrium to recover Galilean-invariant form of Navier-Stokes equation (without any cubic error). In the first part of this work, we show that the present model can capture two important features of the microflow in a single component gas: Knudsen boundary layer and Knudsen Paradox. Finally, we present numerical results corresponding to Couette flow for two representative Knudsen numbers. We show that the off-lattice D3Q27 model exhibits better accuracy as compared to more widely used on-lattice D3Q19 or D3Q27 model. Finally, our construction of discrete velocity model shows that there is no contradiction between entropic construction and quadrature-based procedure for the construction of the lattice Boltzmann model.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.82.046701DOI Listing

Publication Analysis

Top Keywords

lattice boltzmann
12
boltzmann model
12
d3q27 model
12
model
8
off-lattice d3q27
8
higher-order galilean-invariant
4
galilean-invariant lattice
4
model microflows
4
microflows single-component
4
single-component gas
4

Similar Publications

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Fluid flow and amyloid transport and aggregation in the brain interstitial space.

PNAS Nexus

January 2025

Université Paris Cité, CNRS, Laboratoire de Biochimie  Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France.

The driving mechanisms at the base of the clearance of biological wastes in the brain interstitial space (ISS) are still poorly understood and an actively debated subject. A complete comprehension of the processes that lead to the aggregation of amyloid proteins in such environment, hallmark of the onset and progression of Alzheimer's disease, is of crucial relevance. Here we employ combined computational fluid dynamics and molecular dynamics techniques to uncover the role of fluid flow and proteins transport in the brain ISS.

View Article and Find Full Text PDF

Proton exchange membrane fuel cells (PEMFCs) are being pursued for applications in the maritime industry to meet stringent ship emissions regulations. Further basic research is needed to improve the performance of PEMFCs in marine environments. Assembly stress compresses the gas diffusion layer (GDL) beneath the ribs, significantly altering its pore structure and internal transport properties.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important vasodilator responsible for maintaining vascular tone in the human body. Its production in endothelial cells (ECs) is regulated by the rise of cytoplasmic Ca concentration and shear stress perceived by blood flow. The increase in cytoplasmic Ca concentration is mainly activated by adenosine triphosphate (ATP) released from red blood cells (RBCs) and ECs.

View Article and Find Full Text PDF

Closure equation and higher-order moment relations in the Gauss-Hermite lattice Boltzmann method.

Phys Rev E

November 2024

Graduate Aerospace Laboratories and Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.

Moment methods are often used to solve transport problems involving the Boltzmann-BGK equation. Because the moment equations are underdetermined, these methods require an additional "closure equation" that relates higher to lower-order moments. Here, we examine the closure equation and higher-order moment relations implicit in the lattice Boltzmann method (LBM) that use Gauss-Hermite quadrature for their discrete velocity sets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!