A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Divergence of laser-driven relativistic electron beams. | LitMetric

Divergence of laser-driven relativistic electron beams.

Phys Rev E Stat Nonlin Soft Matter Phys

ETSI Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain.

Published: September 2010

Electron acceleration by ultrahigh intensity lasers is studied by means of two-dimensional planar particle-in-cell simulations. It is shown that the full divergence of the fast electron beam is defined by two complementary physical effects: the regular radial beam deviation depending on the electron radial position and the angular dispersion. If the scale length of the preplasma surrounding the solid target is sufficiently low, the radial deviation is determined by the transverse component of the laser ponderomotive force. The random angular dispersion is due to the small scale magnetic fields excited near the critical density due to the collisionless Weibel instability. When a preplasma is present, the radial beam deviation increases due to the electron acceleration in larger volumes and can become comparable to the local angular dispersion. This effect has been neglected so far in most of the fast electron transport calculations, overestimating significantly the beam collimation by resistive magnetic fields. Simulations with a two-dimensional cylindrically-symmetric hybrid code accounting for the electron radial velocity demonstrate a substantially reduced strength and a shorter penetration of the azimuthal magnetic field in solid targets.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.82.036405DOI Listing

Publication Analysis

Top Keywords

angular dispersion
12
electron acceleration
8
fast electron
8
radial beam
8
beam deviation
8
electron radial
8
magnetic fields
8
electron
7
radial
5
divergence laser-driven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!