Heat generation caused by ablation of restorative materials with an ultrashort pulse laser (USPL) system.

Lasers Med Sci

Department of Operative and Preventive Dentistry, University of Bonn, Welschnonnenstrasse. 17, 53111, Bonn, Germany.

Published: March 2012

Heat generation during the removal of dental restorative materials may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental restoration materials following laser ablation using an ultrashort pulse laser (USPL) system. A total of 225 specimens of phosphate cement (PC), ceramic (CE), and composite (C) were used, evaluating a thickness of 1 to 5 mm each. Ablation was performed with an Nd:YVO(4) laser at 1,064 nm, a pulse length of 8 ps, and a repetition rate of 500 kHz with a power of 6 W. Employing a scanner system, rectangular cavities of 1.5-mm edge length were generated. A temperature sensor was placed at the back of the specimens to record the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the thickness of the restoration material (p < 0.05) with the highest values in the composite group (p < 0.05), showing an increase of up to 17 K. A time delay for temperature increase during the ablation process depending on the material thickness was observed in the PC and C group (p < 0.05) with highest values for cement (p < 0.05). Employing the USPL system for removal of restorative materials, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations might occur.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-010-0875-9DOI Listing

Publication Analysis

Top Keywords

heat generation
20
restorative materials
12
uspl system
12
laser ablation
12
ultrashort pulse
8
pulse laser
8
laser uspl
8
temperature increase
8
painful sensations
8
ablation process
8

Similar Publications

Waste Heat and Habitability: Constraints from Technological Energy Consumption.

Astrobiology

January 2025

Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA.

Waste heat production represents an inevitable consequence of energy conversion as per the laws of thermodynamics. Based on this fact, by using simple theoretical models, we analyze constraints on the habitability of Earth-like terrestrial planets hosting putative technological species and technospheres characterized by persistent exponential growth of energy consumption and waste heat generation. In particular, we quantify the deleterious effects of rising surface temperature on biospheric processes and the eventual loss of liquid water.

View Article and Find Full Text PDF

Prescriptions (Rx) for Prevention: Clinical Tools for Integrating Environmental Health into Pediatric Clinical Care.

J Public Health Manag Pract

January 2025

Department of Environmental Medicine and Public Health (Mr Bland, Dr Zajac, Ms Guel, Dr Pendley, Dr Galvez, Dr Sheffield), Icahn School of Medicine at Mount Sinai, New York, New York; Harvard Kenneth C. Griffin Graduate School of Arts and Sciences (Mr Wilson), Boston, Massachusetts; Environmental Research and Translation for Health (EaRTH) Center (Ms Charlesworth), University of California, San Francisco, California; Community Engagement Core, Environmental Health Sciences Center at Department of Environmental Medicine (Dr Korfmacher), University of Rochester Medical Center, Rochester, New York; Pediatric Environmental Health and Cincinnati Children's Hospital Medical Center (Dr Newman), Cincinnati, Ohio; Philadelphia Regional Center for Children's Environmental Health, Center of Excellence in Environmental Toxicology, Perelman School of Medicine (Dr Howarth), University of Pennsylvania, Philadelphia, Pennsylvania; and Division of Academic General Pediatrics, Children's Hospital at Montefiore (Dr Balk), Albert Einstein College of Medicine, Bronx, New York.

The integration of environmental health (EH) into routine clinical care for children is in its early stages. The vision of pediatric EH is that all clinicians caring for children are aware of and able to help connect families to needed resources to reduce harmful environmental exposures and increase health-enhancing ones. Environmental exposures include air pollution, substandard housing, lead, mercury, pesticides, consumer products chemicals, drinking water contaminants, industrial facility emissions and, increasingly, climate change-related extreme weather and heat events.

View Article and Find Full Text PDF

A Fish-Gill-Inspired Biomimetic Multiscale-Ordered Hydrogel-Based Solar Water Evaporator for Highly Efficient Salt-Rejecting Seawater Desalination.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination.

View Article and Find Full Text PDF

NanoTrackThera Platform for Real-Time, In Situ Monitoring of Tumor Immunotherapy and Photothermal Synergistic Efficacy.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China.

Cancer is one of the leading causes of death worldwide, posing a significant threat to human health. Although immunotherapy has shown promise in cancer treatment, its efficacy is often compromised by tumor immune evasion, which hinders treatment outcomes. Therefore, combining immunotherapy with other therapeutic approaches to enhance its effectiveness has become an increasingly accepted strategy in clinical practice.

View Article and Find Full Text PDF

White matter hyperintensities (WMHs) are commonly detected on T2-weighted magnetic resonance imaging (MRI) scans, occurring in both typical aging and Alzheimer's disease (AD). Despite their frequent appearance and their association with cognitive decline in AD, the molecular factors contributing to WMHs remain unclear. In this study, we investigated the transcriptomic profiles of two commonly affected brain regions with coincident AD pathology-frontal subcortical white matter (frontal-WM) and occipital subcortical white matter (occipital-WM)-and compared with age-matched cognitively intact controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!