Dipsaci Radix is the dried root of Dipsacus asper Wall. It has been used in Korean herbal medicine to treat bone fractures. In this study, we examined the effect of the dichloromethane fraction of Dipsaci Radix (DR(DM)) on the osteoblastic differentiation of human alveolar bone marrow-derived MSCs (ABM-MSCs). The ABM-MSCs were isolated from healthy subjects and cultured in vitro, followed by phenotypic characterization. They showed a fibroblast-like morphology and expressed CD29, CD44, CD73, and CD105, but not CD34. Calcified nodules were generated in response to both dexamethasone (DEX) and DR(DM). There was a significant increase in the alkaline phosphatase (ALP) activity and protein expression of bone sialoprotein (BSP) and osteocalcin (OC) in response to DEX and DR(DM) as compared to control. These results provide evidence for the osteogenic potential of cultured ABM-MSCs in response to DR(DM). Also, an active single compound was additionally isolated from DR(DM). The single compound (hederagenin 3-O-(2-O-acetyl)-α-L-arabinopyranoside) also significantly increased ALP activity and the level of protein expression of BSP and OC. These results highlight the possible clinical applications of DR(DM) and hederagenin 3-O-(2-O-acetyl)-α-L-arabinopyranoside in bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.100379DOI Listing

Publication Analysis

Top Keywords

dipsaci radix
12
dichloromethane fraction
8
fraction dipsaci
8
osteoblastic differentiation
8
differentiation human
8
human alveolar
8
alveolar bone
8
bone marrow-derived
8
dex drdm
8
alp activity
8

Similar Publications

Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. However, inevitable contaminants, including mycotoxins, in medicinal herbs can cause serious problems for humans despite their health benefits. The increasing consumption of medicinal plants has made their use a public health problem due to the lack of effective surveillance of the use, efficacy, toxicity, and quality of these natural products.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: The Radix Dipsaci, a traditional Chinese medicine with a history spanning over 2000 years in China, is widely recognized for its hepatorenal tonic properties, musculoskeletal fortifying effects, fracture healing capabilities, and its frequent application in the treatment of osteoporosis. Like many traditional Chinese herbal medicines, preparations from Radix Dipsaci are at risk of contamination by harmful mycotoxins such as aflatoxin B1.

Aims Of The Study: This study aims to evaluate the impact of aflatoxin B1 contamination on Radix Dipsaci in terms of changes in quality, efficacy of anti-osteoporosis and hepatorenal toxicity.

View Article and Find Full Text PDF

Like many traditional Chinese herbal medicines, preparations from Radix Dipsaci are at risk of contamination by harmful mycotoxins; however, there have been no reports of actual contamination. In this study, we developed an analytical method to simultaneously detect eight mycotoxins in Radix Dipsaci and estimate the exposure risk for consumers. We have developed an analytical method utilizing ultra-high performance liquid chromatography and tandem mass spectrometry to accurately determine the levels of AFB1, AFB2, AFG1, AFG2, OTA, ZEN, T-2 and ST mycotoxins in 45 batches of Radix Dipsaci sourced from major medicinal herb markets across five regions in China.

View Article and Find Full Text PDF

Background: Aflatoxin B1, which can penetrate the blood-brain barrier and kill neural cells, can contaminate traditional herbal medicines, posing a significant risk to human health. The present study examined cellular, cognitive and behavioral consequences of aflatoxin B1 contamination of the anti-osteoporotic medicine Radix Dipsaci.

Methods: A mouse model of osteoporosis was created by treating the animals with all-trans-retinoic acid.

View Article and Find Full Text PDF

Sweating is one of the most important processing methods of Chinese medicinal herbs. However, the high temperature and humidity environment required for sweating Chinese medicinal herbs makes it very easy for fungi to breed, especially toxigenic fungi. The mycotoxins produced by these fungi will then contaminate the Chinese medicinal herbs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!