Glucocorticoids rapidly and robustly induce cell fate decisions in various multipotent cells, although the precise mechanisms of these important cellular events are not understood. Here we showed that glucocorticoids repressed Per3 expression and that this repression was critical for advancing mesenchymal stem cells to the adipocyte fate. Exogenous expression of Per3 inhibited adipogenesis, whereas knocking out Per3 enhanced that fate. Moreover, we found that PER3 formed a complex with PPARγ and inhibited PPARγ-mediated transcriptional activation via Pparγ response elements. Consistent with these findings, Per3 knock-out mice displayed alterations in body composition, with both increased adipose and decreased muscle tissue compared with wild-type mice. Our findings identify Per3 as potent mediator of cell fate that functions by altering the transcriptional activity of PPARγ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058992PMC
http://dx.doi.org/10.1074/jbc.M110.164558DOI Listing

Publication Analysis

Top Keywords

cell fate
12
per3
6
fate
5
circadian rhythm
4
rhythm gene
4
gene period
4
period inhibitor
4
inhibitor adipocyte
4
adipocyte cell
4
fate glucocorticoids
4

Similar Publications

The organization of the human genome in space and time is critical for transcriptional regulation and cell fate determination. However, robust methods for tracking genome organization or genomic interactions over time in living cells are lacking. Here, we developed a multicolor DNA labeling system, ParSite, to simultaneously track triple genomic loci in the U2OS cells.

View Article and Find Full Text PDF

Some unique asexual species persist over time and contradict the consensus that sex is a prerequisite for long-term evolutionary survival. How they escape the dead-end fate remains enigmatic. Here, we generated a haplotype-resolved genome assembly on the basis of a single individual and collected genomic data from worldwide populations of the parthenogenetic diploid oribatid mite to identify signatures of persistence without sex.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.

View Article and Find Full Text PDF

Identification of Cell Fate Determining Transcription Factors for Generating Brain Endothelial Cells.

Stem Cell Rev Rep

January 2025

Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, Leuven, 3000, Belgium.

Reliable models of the blood-brain barrier (BBB), wherein brain microvascular endothelial cells (BMECs) play a key role in maintenance of barrier function, are essential tools for developing therapeutics and disease modeling. Recent studies explored generating BMEC-like cells from human pluripotent stem cells (hPSCs) by mimicking brain-microenvironment signals or genetic reprogramming. However, due to the lack of comprehensive transcriptional studies, the exact cellular identity of most of these cells remains poorly defined.

View Article and Find Full Text PDF

Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial-mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!