Participation of vaccinia virus l2 protein in the formation of crescent membranes and immature virions.

J Virol

Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3210, USA.

Published: March 2011

Morphogenesis of vaccinia virus begins with the appearance of crescent-shaped membrane precursors of immature virions in cytoplasmic factories. During the initial characterization of the product of the L2R reading frame, we discovered that it plays an important role in crescent formation. The L2 protein was expressed early in infection and was associated with the detergent-soluble membrane fraction of mature virions, consistent with two potential membrane-spanning domains. All chordopoxviruses have L2 homologs, suggesting an important function. Indeed, we were unable to isolate an infectious L2R deletion mutant. Consequently, we constructed an inducible mutant with a conditional lethal phenotype. When L2 expression was repressed, proteolytic processing of the major core proteins and the A17 protein, which is an essential component of the immature virion membrane, failed to occur, suggesting an early block in viral morphogenesis. At 8 h after infection in the presence of inducer, immature and mature virions were abundantly seen by electron microscopy. In contrast, those structures were rare in the absence of inducer and were replaced by large, dense aggregates of viroplasm. A minority of these aggregates had short spicule-coated membranes, which resembled the beginnings of crescent formation, at their periphery. These short membrane segments at the edge of the dense viroplasm increased in number at later times, and some immature virions were seen. Although the L2 protein was not detected under nonpermissive conditions, minute amounts could account for stunted and delayed viral membrane formation. These findings suggested that L2 is required for the formation or elongation of crescent membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067936PMC
http://dx.doi.org/10.1128/JVI.02505-10DOI Listing

Publication Analysis

Top Keywords

immature virions
12
vaccinia virus
8
crescent membranes
8
crescent formation
8
mature virions
8
formation
5
immature
5
virions
5
membrane
5
participation vaccinia
4

Similar Publications

HIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome.

View Article and Find Full Text PDF

Octahedral small virus-like particles of dengue virus type 2.

J Virol

December 2024

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.

Unlabelled: Flavivirus envelope (E) and precursor M (prM) proteins, when ectopically expressed, assemble into empty, virus-like particles (VLPs). Cleavage of prM to M and loss of the pr fragment converts the VLPs from immature to mature particles, mimicking a similar maturation of authentic virions. Most of the VLPs obtained by prM-E expression are smaller than virions; early, low-resolution cryo-EM studies suggested a simple, 60-subunit, icosahedral organization.

View Article and Find Full Text PDF

HIV is a lentivirus characterized by the formation of its mature core. Visualization and structural examination of HIV requires purification of virions to high concentrations. The yield and integrity of these virions are crucial for ensuring a uniform representation of all viral particles in subsequent analyses.

View Article and Find Full Text PDF

HIV-1 particles are released in an immature, non-infectious form. Proteolytic cleavage of the main structural polyprotein Gag into functional domains induces rearrangement into mature, infectious virions. In immature virus particles, the Gag membrane binding domain, MA, forms a hexameric protein lattice that undergoes structural transition upon cleavage into a distinct, mature MA lattice.

View Article and Find Full Text PDF

Effect of Pregenomic RNA on the Mechanical Stability of HBV Capsid by Coarse-Grained Molecular Simulations.

J Phys Chem B

November 2024

Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China.

Hepatitis B virus (HBV) is a double-stranded DNA virus, but its life cycle involves an intermediate stage, during which pregenomic RNA (pgRNA) is encapsulated in the capsid and then reverse-transcribed into the minus DNA strand. These immature HBV virions are the key target for antiviral drug discovery. In this study, we investigate the flexibility and mechanical stability of the HBV capsid containing pgRNA by employing residue-resolved coarse-grained molecular dynamics simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!