Natural contamination of arsenic in ground water is a major health problem throughout the World. It is one of the most hazardous substances in the environment known to cause toxicity in multiple organs via oxidative stress. The molecular basis for arsenic toxicity involves direct or indirect damage to protein, lipid and DNA. Various studies have focused on the possible toxic effects of arsenic on membrane components and its correlation with oxidative damage. The present study was aimed to mitigation of arsenic induced hepatic oxidative stress by dietary modulation using of mushroom lectin in rats. Animals were divided into four groups; the first group was used as control. Groups 2, 3 and 4 were arsenic (20 ppm) exposed through drinking water, arsenic exposed plus oral ascorbic acid (25 mg/kg body weight) and arsenic exposed plus oral mushroom lectin (150 mg/kg body weight) respectively for a period of 12 weeks. We observed significant alterations in the antioxidant enzymes, oxidative stress intermediates and SOD(2) gene expression profile on arsenic exposure. These alterations were restored by co-administration of Pleurotus florida lectin which was as potent as standard antioxidant viz. ascorbic acid. The findings of the experiment suggested that P. florida lectin has capability of modulating arsenic mediated toxic effects and could be helpful in ameliorating them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.etp.2010.12.010 | DOI Listing |
Plant Physiol Biochem
January 2025
Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil.
Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.
View Article and Find Full Text PDFRev Neurosci
January 2025
School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China.
Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.
View Article and Find Full Text PDFJ Clin Psychiatry
January 2025
Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, and Department of Psychiatry, New York University School of Medicine, New York, New York.
There are few established treatments for negative symptoms in schizophrenia, which persist in many patients after positive symptoms are reduced. Oxidative stress, inflammation, and epigenetic modifications involving histone deacetylase (HDAC) have been implicated in the pathophysiology of schizophrenia. Sulforaphane has antioxidant properties and is an HDAC inhibitor.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Maxillofacial Radiology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan.
Synephrine, a protoalkaloid found in Citrus aurantium (CA) peels, exerts lipolytic, anti-inflammatory, and vasoconstrictive effects; however, its antioxidant activity remains unclear. In this study, electron spin resonance spectroscopy revealed that synephrine scavenged both hydroxyl and superoxide anion radicals. Several external stimuli, such as HO, X-rays, and ultraviolet (UV) radiation, cause stress-induced premature senescence (SIPS).
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Luigi Vanvitelli 32, 20133, Milan, Italy.
Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!