AI Article Synopsis

Article Abstract

The X-ray crystal structure of human S-adenosylhomocysteine (AdoHcy) hydrolase was first determined as a tetrameric form bound with the novel mechanism-based inhibitor fluoroneplanocin A (4b). The crystallized enzyme complex showed the closed conformation and turned out to be the intermediate of mechanism-based inhibition. It confirmed that the cofactor depletion by 3'-oxidation of fluoroneplanocin A contributes to the enzyme inhibition along with the irreversible covalent modification of AdoHcy hydrolase. In addition, a series of haloneplanocin A analogues (4b-e and 5b-e) were designed and synthesized to characterize the binding role and reactivity of the halogen substituents and the 4'-CH(2)OH group. The biological evaluation and molecular modeling studies identified the key pharmacophores and structural requirements for the inhibitor binding of AdoHcy hydrolase. The inhibitory activity was decreased as the size of the halogen atom increased and/or if the 4'-CH(2)OH group was absent. These results could be utilized to design new therapeutic agents operating via AdoHcy hydrolase inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm1010836DOI Listing

Publication Analysis

Top Keywords

adohcy hydrolase
16
x-ray crystal
8
crystal structure
8
human s-adenosylhomocysteine
8
novel mechanism-based
8
haloneplanocin analogues
8
4'-ch2oh group
8
hydrolase
5
structure binding
4
binding mode
4

Similar Publications

Dysmorphic Findings in SAHH Deficiency with a Novel Variant in the Gene.

Mol Syndromol

December 2024

Department of Medical Genetics, University of Health Sciences, Van Training and Research Hospital, Van, Turkey.

Introduction: S-adenosylhomocysteine hydrolase (SAHH) is one of the enzymes involved in converting methionine to homocysteine with transmethylation processes. Methyltransfer reactions are impaired in SAHH deficiency. SAHH deficiency is multisystemic and antenatal onset disorder.

View Article and Find Full Text PDF

S-adenosylmethionine and S-adenosyl-L-homocysteine metabolism is involved in the sperm motility and in vitro fertility rate in mouse.

Biochem Biophys Res Commun

December 2024

Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Neutron Therapy Research Center, Okayama University, Okayama, Japan. Electronic address:

Increased fragmentation of sperm DNA has been implicated in male infertility. Folate deficiency results in impaired methionine synthesis, depletion of S-adenosylmethionine (SAM) levels, an increase in S-adenosyl-l-homocysteine (SAH) levels, and increased DNA fragmentation. Disruption of the dynamic balance between SAM and SAH may also contribute, although the details of this process are not yet fully understood.

View Article and Find Full Text PDF

Computational-driven discovery of AI-2 quorum sensing inhibitor targeting the 5'- methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) to combat drug-resistant Helicobacter pylori.

Comput Biol Med

January 2025

Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India; Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India. Electronic address:

MTAN is an attainable therapeutic target for H. pylori because it may minimize virulence production, limit resistance, and impair quorum sensing without affecting gut flora. Here, 457 compounds with anti-H.

View Article and Find Full Text PDF
Article Synopsis
  • S-adenosylhomocysteine hydrolase deficiency is an autosomal recessive metabolic disorder disrupting the methionine cycle, which can range from severe symptoms to asymptomatic cases.
  • Two clinically asymptomatic siblings from Pakistan were diagnosed with mild chronic liver failure and other mild symptoms, with one sibling showing improvements after dietary changes.
  • The research highlights a specific genetic variant common in South Asia and suggests this milder form of the disease may be underdiagnosed, emphasizing the need for better therapeutic management to prevent future health complications.
View Article and Find Full Text PDF

In memory of an exquisite medicinal chemist, Prof. Morris Robins.

Nucleosides Nucleotides Nucleic Acids

November 2024

Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000Leuven, Belgium.

Among the most prominent realizations of Morris J. Robins in the antiviral nucleoside chemistry are the synthesis of 8-substituted (methyl-, amino-, bromo-, iodo) derivatives of acyclovir, xylotubercidin as an inhibitor of herpes simplex virus (HSV) infections, the anti-HIV activity of the 2',3'-dideoxyriboside of 2,6-diaminopurine (ddDAPR) and the 3'-azido- and 3'-fluoro derivatives thereof (AzddDAPR and FddDAPR, respectively), the potentiating effect of ribavirin on the anti-HIV activity of 2',3'-dideoxyinosine (ddI) and ddDAPR, S-adenosylhomocysteine hydrolase (SAH) inhibitors principally active against vaccinia virus (VV) and vesicular stomatitis virus (VSV), and furo[2,3-d]pyrimidinone derivatives active against varicella-zoster virus (VZV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!