By performing ab initio density functional theory (DFT) calculations and electronic transport simulations based on the DFT nonequilibrium Green's functions method we investigate how the conformational changes of a benzene-1,4-dithiol molecule bonded to gold affect the molecular transport as the electrodes are separated from each other. In particular we consider the full evolution of the stretching process until the junction breaking point and compare results obtained with a standard semilocal exchange and correlation functional to those computed with a self-interaction corrected method. We conclude that the inclusion of self-interaction corrections is fundamental for describing both the molecule conductance and its stability against conformational fluctuations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn101628w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!