Identification of adult mineralized tissue zebrafish mutants.

Genesis

Divison of Craniofacial and Molecular Genetics, Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA 02111, USA.

Published: April 2011

Zebrafish craniofacial, skeletal, and tooth development closely resembles that of higher vertebrates. Our goal is to identify viable adult zebrafish mutants that can be used as models for human mineralized craniofacial, dental, and skeletal system disorders. We used a large-scale forward-genetic chemical N-ethyl-nitroso-urea mutagenesis screen to identify 17 early lethal homozygous recessive mutants with defects in craniofacial cartilage elements, and 7 adult homozygous recessive mutants with mineralized tissue phenotypes including craniofacial shape defects, fused sutures, dysmorphic or missing skeletal elements, scoliosis, and neural arch defects. One mutant displayed both an early lethal homozygous phenotype and an adult heterozygous phenotype. These results extend the utility of the zebrafish model beyond the embryo to study human bone and cartilage disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996835PMC
http://dx.doi.org/10.1002/dvg.20712DOI Listing

Publication Analysis

Top Keywords

mineralized tissue
8
zebrafish mutants
8
early lethal
8
lethal homozygous
8
homozygous recessive
8
recessive mutants
8
identification adult
4
adult mineralized
4
zebrafish
4
tissue zebrafish
4

Similar Publications

The Diagnosis and Therapy of Osteoporosis in Gaucher Disease.

Calcif Tissue Int

January 2025

Fondazione FIRMO Onlus, Italian Foundation for the Research On Bone Diseases, Florence, Italy.

Gaucher disease is a rare lysosomal storage disorder characterized by the accumulation of glucocerebroside lipids within multiple organs due to a deficiency of the lysosomal enzyme (acid β-glucosidase). It is an inherited autosomal recessive disease. The onset of symptoms can vary depending on disease type and severity, with milder forms presenting in adulthood.

View Article and Find Full Text PDF

Guided bone regeneration therapy based on plaque control of peri-implantitis with follow-up at 7 years.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

Dept. of Periodontics, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China.

Peri-implantitis is a pathologic condition associated with dental plaque that occurs in the implant tissue and is characterized by inflammation of the mucous membrane surrounding the implant, followed by the progressive loss of supporting bone. In this study, a case of guided bone regeneration therapy based on plaque control of peri-implant inflammation was reported. Four years after surgery for the left second premolar implant, the patient presented with "left lower posterior tooth swelling and discomfort for more than 2 years".

View Article and Find Full Text PDF

Orthopedic, maxillofacial, and complex dentoalveolar bone grafting procedures that require donor-site bone harvesting can be associated with post-surgical complications. There has been widespread adoption of exogenously sourced particulate bone graft materials (BGM) for bone regenerative procedures; however, the particulate nature of these materials may lead to compromised healing outcomes, mainly attributed to structural collapse of the BGM, prolonged tissue healing. In this study, a fully synthetic thermoresponsive hydrogel-based universal carrier matrix (TX) that forms flowable and shapable putties with different BGMs while spatially preserving the particles in a 3D scaffold at the implantation site is introduced.

View Article and Find Full Text PDF

Fractures, with a yearly incidence of 1.2%, can lead to healing complications in up to 10% of cases. The angiogenic stimulant deferoxamine (DFO) is recognized for enhancing bone healing when administered into the fracture gap.

View Article and Find Full Text PDF

Background: Rapid kilovolt (kV)-switching dual-energy computed tomography (DECT) has been increasingly applied to the measurement of lumbar spine bone mineral density (BMD) in humans and animal models. The objective of this study was to investigate the optimal parameters for the measurement of vertebral BMD. The BMD of the spinal model was measured by means of DECT in combination with different noise index (NI) and preset adaptive statistical iterative reconstruction Veo (ASiR-V) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!