When the serotonin transporter gene meets adversity: the contribution of animal models to understanding epigenetic mechanisms in affective disorders and resilience.

Curr Top Behav Neurosci

Molecular Psychiatry, ADHD Clinical Research Network, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstr. 15, 97080, Wuerzburg, Germany,

Published: April 2016

Although converging epidemiological evidence links exposure to stressful life events with increased risk for affective spectrum disorders, there is extraordinary interindividual variability in vulnerability to adversity. The environmentally moderated penetrance of genetic variation is thought to play a major role in determining who will either develop disease or remain resilient. Research on genetic factors in the aetiology of disorders of emotion regulation has, nevertheless, been complicated by a mysterious discrepancy between high heritability estimates and a scarcity of replicable gene-disorder associations. One explanation for this incongruity is that at least some specific gene effects are conditional on environmental cues, i.e. gene-by-environment interaction (G × E) is present. For example, a remarkable number of studies reported an association of variation in the human serotonin (5-HT) transporter gene (SLC6A4, 5-HTT, SERT) with emotional and cognitive traits as well as increased risk for depression in interaction with psychosocial adversity. The results from investigations in non-human primate and mouse support the occurrence of G × E interaction by showing that variation of 5-HTT function is associated with a vulnerability to adversity across the lifespan leading to unfavourable outcomes resembling various neuropsychiatric disorders. The neural and molecular mechanisms by which environmental adversity in early life increases disease risk in adulthood are not known but may include epigenetic programming of gene expression during development. Epigenetic mechanisms, such as DNA methylation and chromatin modification, are dynamic and reversible and may also provide targets for intervention strategies (see Bountra et al., Curr Top Behav Neurosci, 2011). Animal models amenable to genetic manipulation are useful in the identification of molecular mechanisms underlying epigenetic programming by adverse environments and individual differences in resilience to stress. Therefore, deeper insight into the role of epigenetic regulation in the process of neurodevelopmental programmes is likely to result in early diagnosis of affective spectrum disorders and will contribute to the design of innovative treatments targeting neural pathways that foster resilience.

Download full-text PDF

Source
http://dx.doi.org/10.1007/7854_2010_109DOI Listing

Publication Analysis

Top Keywords

transporter gene
8
animal models
8
epigenetic mechanisms
8
increased risk
8
affective spectrum
8
spectrum disorders
8
vulnerability adversity
8
molecular mechanisms
8
epigenetic programming
8
adversity
5

Similar Publications

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro.

View Article and Find Full Text PDF

Mitochondrial Porin Is Required for Versatile Biocontrol Trait-Involved Biological Processes in a Filamentous Insect Pathogenic Fungus.

J Agric Food Chem

January 2025

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China.

The mitochondrial voltage-dependent anion channel (VDAC) is the major channel in the mitochondrial outer membrane for metabolites and ions. VDACs also regulate a variety of biological processes, which vary in the number of VDAC isoforms across different eukaryotes. However, little is known about VDAC-mediated biocontrol traits in biocontrol fungi.

View Article and Find Full Text PDF

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!