The landfilling and dumping of persistent organic pollutants (POPs) and other persistent hazardous compounds, such as polychlorinated biphenyls (PCBs), hexachlorocyclohaxane (HCH), polybrominated diphenylether (PBDEs) or perfluorooctane sulfonic acid (PFOS) can have significant adverse environmental consequences. This paper reviews past experiences with such disposal practices and highlights their unsustainability due to the risks of contamination of ecosystems, the food chain, together with ground and drinking water supplies. The use and associated disposal of POPs have been occurring for over 50 years. Concurrent with the phase-out of some of the most hazardous chemicals, the production of new POPs, such as brominated and fluorinated compounds has increased since the 1990s. These latter compounds are commonly used in a wide range of consumer goods, and as consumer products reach the end of their useful lives, ultimately enter waste recycling and disposal systems, in particular at municipal landfills. Because of their very slow, or lack of degradability, POPs will persist in landfills for many decades and possibly centuries. Over these extended time periods engineered landfill systems and their liners are likely to degrade, thus posing a contemporary and future risk of releasing large contaminant loads to the environment. This review highlights the necessity for alternative disposal methods for POP wastes, including destruction or complete removal from potential environmental release. In addition to such end of pipe solutions a policy change in the use pattern of persistent toxic chemicals is inevitable. In addition, inventories for the location and quantity of POPs in landfills, together with an assessment of their threat to ecosystems, drinking water and food resources are identified as key measures to facilitate appropriate management of risks. Finally the challenges of POP wastes in transition/developing countries, the risk of increased leaching of POPs from landfills due to climate change, and the possible negative impact of natural attenuation processes are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0734242X10390730DOI Listing

Publication Analysis

Top Keywords

persistent organic
8
organic pollutants
8
drinking water
8
pop wastes
8
pops landfills
8
pops
6
landfills
5
review article
4
persistent
4
article persistent
4

Similar Publications

Methylene blue is a cationic organic dye commonly found in wastewater, groundwater, and surface water due to industrial discharge into the environment. This emerging pollutant is notably persistent and can pose risks to both human health and the environment. In this study, we developed a Surface Plasmon Resonance Biosensor employing a BK7 prism coated with 3 nm chromium and 50 nm of gold in the Kretschmann configuration, specifically for the detection of methylene blue.

View Article and Find Full Text PDF

Bacteria of the genus are the most studied microorganisms that biodegrade persistent perfluoroorganic pollutants, and the research of their application for the remediation of environmental sites using biotechnological approaches remains relevant. The aim of this study was to investigate the ability of a known destructor of perfluorooctane sulfonic acid from the genus to accelerate and enhance the destruction of long-chain perfluorocarboxylic acids (PFCAs), specifically perfluorooctanoic acid and perfluorononanoic acid, in water and soil in association with the strain . 5(3), which has previously confirmed genetic potential for the degrading of PFCAs.

View Article and Find Full Text PDF

Short-chain chlorinated paraffins (SCCPs) are a persistent organic pollutant, and limited information is available on their bioaccumulation and trophic transfer, which would be affected by carbon chain length, chlorine content, and hydrophobicity. In this study, relevant data on SCCPs in water, sediments, and organisms collected from Laizhou Bay were analyzed to investigate the specific distribution of SCCPs and their bioaccumulation and trophic transfer. In water and sediments, the average SCCP concentrations (ΣSCCPs) were 362.

View Article and Find Full Text PDF

Mechanistic Insights into Succinic Acid as an Adjuvant for Ciprofloxacin in Treating Growing Within Cystic Fibrosis Airway Mucus.

Microorganisms

December 2024

Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

is a major cause of chronic respiratory infections in patients with cystic fibrosis (CF), with biofilm formation contributing to its persistence and antibiotic resistance. This study aimed to gain insights into the mechanistic action of succinic acid as a ciprofloxacin adjuvant against clinically relevant CF isolates, including small colony variants and mucoid strains, and a ciprofloxacin-resistant strain grown within CF dense mucus. Time-kill assays in artificial CF mucus, along with planktonic and surface-attached biofilm experiments, were used to assess the activity of succinic acid alone and in combination with sublethal ciprofloxacin concentrations.

View Article and Find Full Text PDF

Advances in the Degradation of Polycyclic Aromatic Hydrocarbons by Yeasts: A Review.

Microorganisms

December 2024

Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico.

Polycyclic aromatic hydrocarbons (PAHs) are toxic organic compounds produced during the incomplete combustion of organic materials and are commonly found in the environment due to anthropogenic activities such as industrial and vehicular emissions as well as natural sources, mainly volcanic eruptions and forest fires. PAHs are well known for their bioaccumulative capacity and environmental persistence, raising concerns due to their adverse effects on human health, including their carcinogenic potential. In recent years, bioremediation has emerged as a promising, effective, and sustainable solution for the degradation of PAHs in contaminated environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!