A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Probing the physical nature and composition of signalsomes. | LitMetric

Probing the physical nature and composition of signalsomes.

J Mol Signal

Departments of Physiology & Biophysics, Health Sciences Center, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794-8661 USA.

Published: January 2011

Background: Recent advances in our understanding of cell signaling have revealed assemblies of signaling components often viewed in fluorescence microscopy as very large, irregular "punctae". These punctae are often dynamic in nature, appearing to act as mobile scaffolds that function in integrating protein-protein interactions from large arrays of signaling components. The visualization of these punctae, termed "signalsomes" when applied to protein assemblies involved in cell signaling provokes the question, what is the physical nature of these structures made visible in live cells through the expression of fluorescently-tagged fusion molecules?

Results: Steric-exclusion chromatography on wide-bore matrices, fluorescence correlation spectroscopy, and advanced proteomics permits the analysis of several important physical properties of signalsomes. Wnt canonical signaling is essential to normal cell development and dysregulation can lead to cancers in humans. Punctae/signalsomes have been reported based upon the study of fluorescently-tagged mammalian Dishevelleds. Dishevelleds are phosphoprotein scaffolds that demonstrate dynamic character and mobility in cells stimulated with Wnt3a. Recent studies have successfully isolated Dvl3-based signalsomes from mouse totipotent embryonic teratocarcinoma F9 cells in culture and sized by application of steric exclusion chromatography (SEC), displaying large discrete Mr (0.5 and 2 MDa). Activation of the Wnt canonical β-catenin/LEF-Tcf-sensitive transcriptional response leads to an upfield shift of >5 MDa of the Dvl3-based signalsome. Fluorescence correlation spectroscopy (fcs) is a single molecule analysis performed in live cells that experimentally measures the diffusion coefficient and permits calculation of MW of the signalsome (0.2 and 30 MDa species in vivo), which also reveal an upfield shift in MW in response to Wnt3a. Proteomics provides for molecular dissection of the composition of the signalsome isolated from untreated and Wnt3a-treated cells.

Conclusion: Dvl3-based punctae/signalsomes made visible by fluorescent microscopy now can be interrogated by advanced physical means, defining such properties as signalsome Mr/MW, molecular composition, and intracellular locale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3027200PMC
http://dx.doi.org/10.1186/1750-2187-6-1DOI Listing

Publication Analysis

Top Keywords

physical nature
8
cell signaling
8
signaling components
8
live cells
8
fluorescence correlation
8
correlation spectroscopy
8
wnt canonical
8
upfield shift
8
signaling
5
probing physical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!