Aims: To catalogue the perpetrators of CYP-mediated pharmacokinetic drug-drug interactions (PK-DDIs) using clinically relevant criteria, and to compare this with an analogous catalogue.
Methods: Candidate inhibitors and inducers of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A ('perpetrators') were evaluated using published clinical pharmacokinetic interaction studies. Studies were selected on the basis of ≥six human subjects, use of a validated in vivo probe substrate for the CYP enzyme, and clinically relevant dosing. Inhibitors were described according to the FDA classifications of strong, moderate or weak, whereas inducers were classified as major (≥twofold decrease in AUC) or weak (
Results: From a list of 216 candidate drugs (349 CYP-perpetrator pairs, CYP-PPs), 36 inhibitors and eight inducers were accepted as major perpetrators of PK-DDIs, resulting in 58 CYP-PPs. In comparison, the clinical version of the CDIT had a sensitivity of 33% and a positive predictive value of 68%. One hundred and ninety-nine CYP-PPs were rejected as major perpetrators, and 92 CYP-PPs had insufficient published human pharmacokinetic data for robust classification.
Conclusions: Using a criteria-based assessment, the number of drugs that are proven or likely major perpetrators of CYP-mediated PK-DDIs is relatively small. Current clinical decision support on PK-DDIs is inconsistent with the published evidence and can be improved using simple criteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093078 | PMC |
http://dx.doi.org/10.1111/j.1365-2125.2011.03903.x | DOI Listing |
J Pharmacokinet Pharmacodyn
January 2025
Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
P-glycoprotein (P-gp) is a key efflux transporter and may be involved in drug-drug interactions (DDIs) at the blood-brain barrier (BBB), which could lead to changes in central nervous system (CNS) drug exposure. Morphine is a P-gp substrate and therefore a potential victim drug for P-gp mediated DDIs. It is however unclear if P-gp inhibitors can induce clinically relevant changes in morphine CNS exposure.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E Spokane Falls Blvd., Spokane, WA 99202, USA.
Morphine is a commonly prescribed opioid analgesic used to treat chronic pain. Morphine undergoes glucuronidation by UDP-glucuronosyltransferase (UGT) 2B7 to form morphine-3-glucuronide and morphine-6-glucuronide. Morphine is the gold standard for chronic pain management and has a narrow therapeutic index.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland.
Background: Olaparib (OLA) and regorafenib (REG) are metabolized by the CYP3A4 isoenzyme of cytochrome P450. Both drugs are also substrates and inhibitors of the membrane transporters P-glycoprotein and BCRP. Therefore, the potential concomitant use of OLA and REG may result in clinically relevant drug-drug interactions.
View Article and Find Full Text PDFPharmaceutics
November 2024
Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
This study aimed to develop a quantitative analytical method for the simultaneous determination of cannabidiol (CBD) and melatonin (MT) in mouse plasma using the protein precipitation method coupled with LC-MS/MS. Additionally, this study sought to investigate the impact of CBD on the pharmacokinetics of MT in mice using this method. Mouse plasma samples were precipitated with acetonitrile and analyzed using a Kromasil 100-5-C8 (2.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States.
assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!