Elevated atmospheric carbon dioxide concentrations ([CO(2) ]) might change the abundance and the function of soil microorganisms in the depth profile of agricultural soils by plant-mediated reactions. The seasonal pattern of abundance and activity of nitrate-reducing bacteria was studied in a Mini-FACE experiment planted with oilseed rape (Brassica napus). Three depths (0-10, 10-20 and 20-30 cm) were sampled. Analyses of the abundances of total (16S rRNA gene) and nitrate-reducing bacteria (narG, napA) revealed strong influences of sampling date and depth, but no [CO(2)] effects. Abundance and activity of nitrate reducers were higher in the top soil layer and decreased with depth but were not related to extractable amounts of nitrogen and carbon in soil. Dry periods reduced abundances of total and nitrate-reducing bacteria, whereas the potential activity of the nitrate reductase enzyme was not affected. Enzyme activity was only weakly correlated to the abundance of nitrate-reducing bacteria but was related to NH(4) (+) and NO(3) (-) concentrations. Our results suggest that in contrast to the observed pronounced seasonal changes, the elevation of atmospheric [CO(2) ] has only a marginal impact on nitrate reducers in the investigated arable ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2011.01048.xDOI Listing

Publication Analysis

Top Keywords

nitrate-reducing bacteria
16
abundance activity
12
activity nitrate
12
nitrate reducers
12
elevated atmospheric
8
abundances total
8
abundance
5
soil
5
nitrate
4
reducers arable
4

Similar Publications

We have previously demonstrated that subgingival levels of nitrate-reducing bacteria, as well as the in vitro salivary nitrate reduction capacity (NRC), were diminished in periodontitis patients, increasing after periodontal treatment. However, it remains unclear if an impaired NRC in periodontitis can affect systemic health. To determine this, the effect of nitrate-rich beetroot juice (BRJ) on blood pressure was determined in 15 periodontitis patients before and 70 days after periodontal treatment (i.

View Article and Find Full Text PDF

Iron, Earth's most abundant redox-active metal, undergoes both abiotic and microbial redox reactions that regulate the formation, transformation, and dissolution of iron minerals. The electron transfer between ferrous iron (Fe(II)) and ferric iron (Fe(III)) is critical for mineral dynamics, pollutant remediation, and global biogeochemical cycling. Bacteria play a significant role, especially in anaerobic Fe(II) oxidation, contributing to Fe(III) mineral formation in oxygen-depleted environments.

View Article and Find Full Text PDF

Pilot-scale biogas desulfurization through anoxic biofiltration.

J Hazard Mater

December 2024

Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. Electronic address:

In this study, the performance of a pilot-scale biotrickling filter (BTF) for anoxic hydrogen sulfide (HS) removal from real biogas was evaluated over 226 days. The BTF, inoculated with activated sludge from a nearby wastewater treatment plant, operated in an industrial environment with raw biogas from an anaerobic digester fed with municipal solid waste. The operating strategy was based on controlling nitrate consumption by sulfur-oxidizing nitrate-reducing (SO-NR) bacteria.

View Article and Find Full Text PDF

Influence of enriched nitrate reducing bacteria communities on bacterial community structure and groundwater condition during in situ bioremediation of nitrate in acidic uranium-contaminated groundwater.

Sci Total Environ

January 2025

Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang 421001, Hunan, PR China. Electronic address:

In-situ leaching (ISL) is the predominant technology used in uranium mining currently, although it leads to significant environmental challenges. Nitrates, a key component in leaching agents, not only pose a threat to human health but also impede the bioreduction of U(VI) in uranium-contaminated water. In this study, the nitrate reducing bacterial (NRB) communities adapted to acidic uranium-contaminated groundwater from a site in Northwest China were gained by an enrichment micro-model.

View Article and Find Full Text PDF

Staphylococcus species, traditionally associated with pathogenicity, are gaining attention for their role in environmental bioremediation, particularly nitrate reduction, which is crucial for mitigating eutrophication. In this study, denitrifying, biofilm-forming Staphylococcus strains were isolated from Dal Lake, India. Biofilm formation was quantified using a microtiter plate assay, and extracellular polymeric substances (EPS) were measured by dry weight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!