The inter-generic fungicidal activity of Xanthophyllomyces dendrorhous.

J Microbiol

Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago Casilla, 653, Chile.

Published: December 2010

In this study, the existence of intra-specific and inter-generic fungicidal activity in Xanthophyllomyces dendrorhous and Phaffia rhodozyma strains isolated from different regions of the earth was examined. Assays were performed under several culture conditions, showing that all the analyzed X. dendrorhous and P. rhodozyma strains have killing activity against Kloeckera apiculata, Rhodotorula sloffiae, and R. minuta. This activity was greater in rich media at a pH from 4.6 to 5.0. Extracellular protein extracts with fungicidal activity were obtained from cultures of all strains, and their characterization suggested that a protein of 33 kDa is the antifungal factor. According to peptide mass fingerprinting and an analysis of the results with the MASCOT search engine, this protein was identified as an aspartic protease. Additionally, extrachromosomal double-stranded DNA elements (dsDNAs) were observed in all X. dendrorhous and P. rhodozyma strains. Although there is a high variability, two dsDNAs of 5.4 and 6.8 kb are present in all strains.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-010-0180-0DOI Listing

Publication Analysis

Top Keywords

fungicidal activity
12
rhodozyma strains
12
inter-generic fungicidal
8
activity xanthophyllomyces
8
xanthophyllomyces dendrorhous
8
dendrorhous rhodozyma
8
activity
5
strains
5
dendrorhous
4
dendrorhous study
4

Similar Publications

A novel molecular design based on a quinazolinone scaffold was developed the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like , (Gram-positive), , , (Gram-negative), in addition to (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs.

View Article and Find Full Text PDF

This review outlines research on chemical biology using mainly microbial metabolites for agricultural applications. We established the RIKEN Natural Products Depository (NPDepo), housing many microbial metabolites, to support academic researchers who focus on drug discovery. We studied methods to stimulate secondary metabolism in microorganisms to collect various microbial products.

View Article and Find Full Text PDF

Enantioselective Degradation and Processing Factors of Seven Chiral Pesticides During the Processing of Wine and Rice Wine.

Chirality

January 2025

Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China.

Chiral pesticides often undergo enantioselective degradation during food fermentation. In this study, the enantioselective fates of seven chiral pesticides during processing of wine and rice wine were investigated. The results revealed that R-metalaxyl, R-mefentrifluconazole and S-hexaconazole were preferentially degraded during wine processing with EF values of 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes essential oil extracted from dry Eucalyptus globulus leaves, focusing on its chemical composition and potential health benefits.
  • The oil consists of 20 identified compounds, primarily linalool, and exhibits antifungal properties against Fusarium roseum and antibacterial effects against Pseudomonas savastanoi.
  • While it shows moderate antioxidant activity, it differs from typical eucalyptus oils by being a linalool chemotype rather than eucalyptol-dominant.
View Article and Find Full Text PDF

Nano-viscosimetry analysis of membrane disrupting peptide magainin2 interactions with model membranes.

Biophys Chem

January 2025

La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia. Electronic address:

The rapid spread of antibiotic-resistant strains of bacteria has created an urgent need for new alternative antibiotic agents. Membrane disrupting antimicrobial peptides (AMPs): short amino acid sequences with bactericidal and fungicidal activity that kill pathogens by permeabilizing their plasma membrane may offer a solution for this global health crisis. Magainin 2 is an AMP secreted by the African clawed frog (Xenopus laevis) that is described as a toroidal pore former membrane disrupting AMP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!