Single doses of europium (III) chloride hexahydrate were orally administered to several groups of rats. Cumulative urine samples were taken at 0-24 h, and blood samples were drawn after 24-h administration. The europium concentration was determined in these samples by inductively coupled plasma atomic emission spectroscopy. The volume, creatinine, ß-2-microglobulin, and N-acetyl-ß-D-glucosaminidase were measured in the urine samples to evaluate possible europium-induced renal effects. The blood samples showed low europium distribution, with an average of 77.5 μg/L for all groups. Although the urinary concentration and excretion showed dose-dependent increases, the percentage of europium excreted showed a dose-dependent decrease, with an average of 0.31% in all groups. The administration of europium resulted in a significant decrease of creatinine and a significant increase of urinary volume, N-acetyl-ß-D-glucosaminidase, and ß-2-microglobulin. Rare earth elements, including europium, are believed to form colloidal conjugates that deposit in the reticuloendothelial system and glomeruli. This specific reaction may contribute to low europium bioavailability and renal function disturbances. Despite low bioavailability, the high performance of the analytical method for determination of europium makes the blood and urine sampling suitable tools for monitoring of exposure to this element. The results presented in this study will be of great importance in future studies on the health impacts of rare earth elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-010-8937-1 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
South China Normal University, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, Panyu University Mega Center, 510006, Guangzhou, CHINA.
Scintillators that convert ionizing radiation into low-energy photons are essential for medical diagnostics and industrial inspections. Despite advances in X-ray scintillators, challenges remain in achieving high efficiency, environmental compatibility, stability, and flexibility. Here, we present experimental investigations of a new type of europium(III)-based hybrid ternary complex scintillators for improved X-ray detection and imaging.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, UK.
Here we present the first use of principal component analysis of the full spectrum of a single europium complex to differentiate between structurally-similar analytes. We demonstrate that it can be used to distinguish between the nucleoside phosphate guests AMP, ADP, and ATP.
View Article and Find Full Text PDFJ Clin Lab Anal
December 2024
Department of Laboratory Medicine at the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
Background: To establish a dual immunoassay based on inductively coupled plasma mass spectrometry (ICP-MS) with stable element labeling antibodies for the simultaneous detection of alpha-fetoprotein (AFP) and prostate-specific antigen (PSA) in serum and evaluate its performance and clinical sample validation.
Methods: The immunoassay system based on the double antibody sandwich method was established using magnetic beads as solid-phase carriers and rare earth elements europium (Eu) and samarium (Sm) as element tags. The test conditions were optimized.
Sci Total Environ
December 2024
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
Nanoplastics (NPs) have been found in natural environments. However, the sequestration of NPs and natural organic matter (NOM) coupled with the Fe(III) hydrolysis and subsequent iron oxides transformation remains unclear. Here, we investigated the behaviors of NPs during the dynamic transformation process of iron oxides in the presence of humic acids (HA).
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
The growing use of products containing rare earth elements (REEs) may lead to higher environmental emissions of these elements, which can potentially enter aquatic systems. Praseodymium (Pr) and europium (Eu) are widely used REEs with various applications. However, their ecotoxicological impacts remain largely unexplored, with poorly understood risks to wildlife.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!