Erythropoiesis in β-thalassemia patients is ineffective, primarily because of death of the erythroid progenitor cells at the polychromatic normoblast stage. While it is known that autophagy plays a critical role during erythropoiesis by removing organelles from erythroid cells during terminal differentiation, its role in erythroid cells whose function is impaired remains to be explored. To investigate this, CD34+ erythroid progenitor cells from normal controls and β-thalassemia/Hb E patients were isolated from peripheral blood and cultured under conditions driving differentiation into an erythroid lineage, and levels of autophagy and apoptosis were analyzed both directly and after biochemical manipulation with L: -asparagine. A significantly higher level of autophagy was seen in β-thalassemia/Hb E erythroblasts as compared to normal control erythroblasts during erythropoiesis. Interestingly, this activation was mediated in part by the presence of high levels of Ca(2+) as modulation of Ca(2+) levels significantly reduced the level of autophagy in these cells. Inhibition of autophagic flux in normal erythroblasts significantly increased apoptosis in normal erythroblasts, but not in thalassemic erythroblasts, although sensitivity to autophagic flux inhibition was restored by reduction of Ca(2+) levels. These results suggest that high levels of autophagy in β-thalassemia/HbE erythroblasts may contribute to the increased levels of apoptosis that lead to ineffective erythropoiesis in β-thalassemia/Hb E erythroblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00277-010-1152-5 | DOI Listing |
Biomedicines
January 2025
Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan 0014, Armenia.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with various hematological disorders. Understanding the pathology of erythrocytes (red blood cells) in coronavirus infection may provide insights into disease severity and progression. To review and analyze the general pathology of erythrocytes in patients infected with SARS-CoV-2, focusing on clinical and laboratory findings across different severity groups.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China.
J Clin Lab Anal
June 2024
Department of Hematology, Sağlık Bilimleri University, Antalya, Turkey.
Background/objectives: CD71 erythroid cells (CECs) are immature red blood cells (proerythroblasts, erythroblasts, and reticulocytes). CECs play an important role in the development of sepsis and cancer by causing immunosuppression. We examined the CEC levels in the peripheral blood of beta thalassemia (βThal) patients and investigated the relationship between CECs and the clinical status of the patients, especially splenectomy.
View Article and Find Full Text PDFAnn Hematol
June 2024
Department of Hematology, General Hospital, Tianjin Medical University, No. 154 Anshandao Road, Heping District, Tianjin, 300052, China.
Pure red cell aplasia (PRCA) is a rare bone marrow disorder characterized by a severe reduction or absence of erythroid precursor cells, without affecting granulocytes and megakaryocytes. Immunosuppressive therapies, particularly cyclosporine, have demonstrated efficacy as a primary treatment. This study aims to develop a predictive model for assessing the efficacy of cyclosporine in acquired PRCA (aPRCA).
View Article and Find Full Text PDFExp Cell Res
December 2023
Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy; Center 'Chiara Gemmo and Elio Zago' for the Research on Thalassemia, University of Ferrara, 44121 Ferrara, Italy. Electronic address:
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causative of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The SARS-CoV-2 Spike protein (S-protein) plays an important role in the early phase of SARS-CoV-2 infection through efficient interaction with ACE2. The S-protein is produced by RNA-based COVID-19 vaccines, that were fundamental for the reduction of the viral spread within the population and the clinical severity of COVID-19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!